Loop Vectorizer: Update the cost model of scatter/gather operations and make

them more expensive.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170995 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nadav Rotem 2012-12-23 07:23:55 +00:00
parent c4265e1d68
commit d54fed2786
6 changed files with 40 additions and 46 deletions

View File

@ -69,8 +69,6 @@ public:
virtual ~VectorTargetTransformImpl() {}
virtual unsigned getInstrCost(unsigned Opcode, Type *Ty1, Type *Ty2) const;
virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
virtual unsigned getBroadcastCost(Type *Tp) const;

View File

@ -135,44 +135,28 @@ public:
virtual bool shouldBuildLookupTables() const {
return true;
}
/// getPopcntHwSupport - Return hardware support for population count.
virtual PopcntHwSupport getPopcntHwSupport(unsigned IntTyWidthInBit) const {
return None;
}
/// getIntImmCost - Return the expected cost of materializing the given
/// integer immediate of the specified type.
virtual unsigned getIntImmCost(const APInt&, Type*) const {
// Default assumption is immediate is cheap.
// The default assumption is that the immediate is cheap.
return 1;
}
};
/// VectorTargetTransformInfo - This interface is used by the vectorizers
/// to estimate the profitability of vectorization for different instructions.
/// This interface provides the cost of different IR instructions. The cost
/// is unit-less and represents the estimated throughput of the instruction
/// (not the latency!) assuming that all branches are predicted, cache is hit,
/// etc.
class VectorTargetTransformInfo {
public:
virtual ~VectorTargetTransformInfo() {}
/// Returns the expected cost of the instruction opcode. The opcode is one of
/// the enums like Instruction::Add. The type arguments are the type of the
/// operation.
/// Most instructions only use the first type and in that case the second
/// operand is ignored.
///
/// Exceptions:
/// * Br instructions do not use any of the types.
/// * Select instructions pass the return type as Ty1 and the selector as Ty2.
/// * Cast instructions pass the destination as Ty1 and the source as Ty2.
/// * Insert/Extract element pass only the vector type as Ty1.
/// * ShuffleVector, Load, Store do not use this call.
virtual unsigned getInstrCost(unsigned Opcode,
Type *Ty1 = 0,
Type *Ty2 = 0) const {
return 1;
}
/// Returns the expected cost of arithmetic ops, such as mul, xor, fsub, etc.
virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
return 1;

View File

@ -132,7 +132,6 @@ int VectorTargetTransformImpl::InstructionOpcodeToISD(unsigned Opcode) const {
std::pair<unsigned, MVT>
VectorTargetTransformImpl::getTypeLegalizationCost(Type *Ty) const {
LLVMContext &C = Ty->getContext();
EVT MTy = TLI->getValueType(Ty);
@ -271,7 +270,7 @@ unsigned VectorTargetTransformImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
return getScalarizationOverhead(Dst, true, true) + Num * Cost;
}
// We already handled vector-to-vector and scalar-to-scalar conversions. This
// We already handled vector-to-vector and scalar-to-scalar conversions. This
// is where we handle bitcast between vectors and scalars. We need to assume
// that the conversion is scalarized in one way or another.
if (Opcode == Instruction::BitCast)
@ -283,6 +282,7 @@ unsigned VectorTargetTransformImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
}
unsigned VectorTargetTransformImpl::getCFInstrCost(unsigned Opcode) const {
// Branches are assumed to be predicted.
return 0;
}
@ -330,12 +330,6 @@ unsigned VectorTargetTransformImpl::getVectorInstrCost(unsigned Opcode,
return 1;
}
unsigned
VectorTargetTransformImpl::getInstrCost(unsigned Opcode, Type *Ty1,
Type *Ty2) const {
return 1;
}
unsigned
VectorTargetTransformImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,

View File

@ -17988,7 +17988,6 @@ X86VectorTargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
return VectorTargetTransformImpl::getArithmeticInstrCost(Opcode, Ty);
}
unsigned
X86VectorTargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,

View File

@ -2080,17 +2080,23 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
VectorTy = ToVectorTy(ValTy, VF);
if (VF == 1)
return VTTI->getMemoryOpCost(I->getOpcode(), ValTy,
return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy,
SI->getAlignment(),
SI->getPointerAddressSpace());
// Scalarized stores.
if (!Legal->isConsecutivePtr(SI->getPointerOperand())) {
unsigned Cost = 0;
unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
ValTy);
// The cost of extracting from the value vector.
Cost += VF * (ExtCost);
// The cost of extracting from the value vector and pointer vector.
Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
for (unsigned i = 0; i < VF; ++i) {
Cost += VTTI->getVectorInstrCost(Instruction::ExtractElement,
VectorTy, i);
Cost += VTTI->getVectorInstrCost(Instruction::ExtractElement,
PtrTy, i);
}
// The cost of the scalar stores.
Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
ValTy->getScalarType(),
@ -2107,16 +2113,25 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
LoadInst *LI = cast<LoadInst>(I);
if (VF == 1)
return VTTI->getMemoryOpCost(I->getOpcode(), RetTy,
return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy,
LI->getAlignment(),
LI->getPointerAddressSpace());
// Scalarized loads.
if (!Legal->isConsecutivePtr(LI->getPointerOperand())) {
unsigned Cost = 0;
unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
// The cost of inserting the loaded value into the result vector.
Cost += VF * (InCost);
Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
// The cost of extracting from the pointer vector.
for (unsigned i = 0; i < VF; ++i)
Cost += VTTI->getVectorInstrCost(Instruction::ExtractElement,
PtrTy, i);
// The cost of inserting data to the result vector.
for (unsigned i = 0; i < VF; ++i)
Cost += VTTI->getVectorInstrCost(Instruction::InsertElement,
VectorTy, i);
// The cost of the scalar stores.
Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
RetTy->getScalarType(),
@ -2169,18 +2184,19 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
bool IsVoid = RetTy->isVoidTy();
unsigned InsCost = (IsVoid ? 0 :
VTTI->getInstrCost(Instruction::InsertElement,
VTTI->getVectorInstrCost(Instruction::InsertElement,
VectorTy));
unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
unsigned ExtCost = VTTI->getVectorInstrCost(Instruction::ExtractElement,
VectorTy);
// The cost of inserting the results plus extracting each one of the
// operands.
Cost += VF * (InsCost + ExtCost * I->getNumOperands());
// The cost of executing VF copies of the scalar instruction.
Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy);
// The cost of executing VF copies of the scalar instruction. This opcode
// is unknown. Assume that it is the same as 'mul'.
Cost += VF * VTTI->getArithmeticInstrCost(Instruction::Mul, VectorTy);
return Cost;
}
}// end of switch.

View File

@ -8,8 +8,11 @@ target triple = "x86_64-apple-macosx10.8.0"
@d = common global [2048 x i32] zeroinitializer, align 16
@a = common global [2048 x i32] zeroinitializer, align 16
; The program below gathers and scatters data. We better not vectorize it.
;CHECK: cost_model_1
;CHECK: <4 x i32>
;CHECK-NOT: <2 x i32>
;CHECK-NOT: <4 x i32>
;CHECK-NOT: <8 x i32>
;CHECK: ret void
define void @cost_model_1() nounwind uwtable noinline ssp {
entry: