Change the original algorithm so that it scales better when meeting
very large bitcode where every instruction does not implies a global.
The target query is "how to you get all the globals referenced by
another global"?
Before this patch, it was doing this by walking the body (or the
initializer) and collecting the references. What this patch is doing,
it precomputing the answer to this query for the whole module by
walking the use-list of every global instead.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D28549
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293328 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This is an attempt to reduce the verbose manual dispatching code in APFloat. This doesn't handle multiple dispatch on single discriminator (e.g. APFloat::add(const APFloat&)), nor handles multiple dispatch on multiple discriminators (e.g. APFloat::convert()).
Reviewers: hfinkel, echristo, jlebar
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D29161
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293255 91177308-0d34-0410-b5e6-96231b3b80d8
the main pipeline.
This is a very straight forward port. Nothing weird or surprising.
This brings the number of missing passes from the new PM's pipeline down
to three.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293249 91177308-0d34-0410-b5e6-96231b3b80d8
The translation scheme is mostly cribbed from FastISel, and it's not entirely
convincing semantically. But it does seem to work in the common cases and allow
variables to be printed so it can't be all wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293228 91177308-0d34-0410-b5e6-96231b3b80d8
This commit introduces a set of experimental intrinsics intended to prevent
optimizations that make assumptions about the rounding mode and floating point
exception behavior. These intrinsics will later be extended to specify
flush-to-zero behavior. More work is also required to model instruction
dependencies in machine code and to generate these instructions from clang
(when required by pragmas and/or command line options that are not currently
supported).
Differential Revision: https://reviews.llvm.org/D27028
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293226 91177308-0d34-0410-b5e6-96231b3b80d8
1) Explicitly sets mayLoad/mayStore property in the tablegen files on load/store
instructions.
2) Updated the flags on a number of intrinsics indicating that they write
memory.
3) Added SDNPMemOperand flags for some target dependent SDNodes so that they
propagate their memory operand
Review: https://reviews.llvm.org/D28818
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293200 91177308-0d34-0410-b5e6-96231b3b80d8
This change introduces adjustPassManager target callback giving a
target an opportunity to tweak PassManagerBuilder before pass
managers are populated.
This generalizes and replaces addEarlyAsPossiblePasses target
callback. In particular that can be used to add custom passes to
extension points other than EP_EarlyAsPossible.
Differential Revision: https://reviews.llvm.org/D28336
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293189 91177308-0d34-0410-b5e6-96231b3b80d8
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293184 91177308-0d34-0410-b5e6-96231b3b80d8
Refactoring to remove duplications of this method.
New method getOperandsScalarizationOverhead() that looks at the present unique
operands and add extract costs for them. Old behaviour was to just add extract
costs for one operand of the type always, which still happens in
getArithmeticInstrCost() if no operands are provided by the caller.
This is a good start of improving on this, but there are more places
that can be improved by using getOperandsScalarizationOverhead().
Review: Hal Finkel
https://reviews.llvm.org/D29017
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293155 91177308-0d34-0410-b5e6-96231b3b80d8
factory functions for the two modes the loop unroller is actually used
in in-tree: simplified full-unrolling and the entire thing including
partial unrolling.
I've also wired these up to nice names so you can express both of these
being in a pipeline easily. This is a precursor to actually enabling
these parts of the O2 pipeline.
Differential Revision: https://reviews.llvm.org/D28897
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293136 91177308-0d34-0410-b5e6-96231b3b80d8
directly walks the current loop structure verifying that a matching
structure can be found in a freshly computed version.
Also pull things out of containers when necessary once an issue is found
and print them directly.
This makes it substantially easier to debug verification failures as
the process stops at the exact point in the loop nest where they diverge
and has in easily accessed local variables (or printed to stderr
already) the loops and other information needed to analyze the failure.
Differential Revision: https://reviews.llvm.org/D29142
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293133 91177308-0d34-0410-b5e6-96231b3b80d8
This allows MIR passes to emit optimization remarks with the same level
of functionality that is available to IR passes.
It also hooks up the greedy register allocator to report spills. This
allows for interesting use cases like increasing interleaving on a loop
until spilling of registers is observed.
I still need to experiment whether reporting every spill scales but this
demonstrates for now that the functionality works from llc
using -pass-remarks*=<pass>.
Differential Revision: https://reviews.llvm.org/D29004
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293110 91177308-0d34-0410-b5e6-96231b3b80d8
Code region is the only part of this class that is IR-specific. Code
region is moved down in the inheritance tree to a new derived class,
called DiagnosticInfoIROptimization.
All the existing remarks are derived from this new class now.
This allows the new MIR pass-remark classes to be derived from
DiagnosticInfoOptimizationBase.
Also because we keep the name DiagnosticInfoOptimizationBase, the clang
parts don't need any adjustment.
Differential Revision: https://reviews.llvm.org/D29003
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293109 91177308-0d34-0410-b5e6-96231b3b80d8
This is not a list of pairs, it is a hash table data structure. We now
correctly parse this out and dump it from llvm-pdbdump.
We still need to understand the conditions that lead to a type
getting an entry in the hash adjuster table. That will be done
in a followup investigation / patch.
Differential Revision: https://reviews.llvm.org/D29090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293090 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the first in a series of patches to add a simple, generalized updater to MemorySSA.
For MemorySSA, every def is may-def, instead of the normal must-def.
(the best way to think of memoryssa is "everything is really one variable, with different versions of that variable at different points in the program).
This means when updating, we end up having to do a bunch of work to touch defs below and above us.
In order to support this quickly, i have ilist'd all the defs for each block. ilist supports tags, so this is quite easy. the only slightly messy part is that you can't have two iplists for the same type that differ only whether they have the ownership part enabled or not, because the traits are for the value type.
The verifiers have been updated to test that the def order is correct.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293085 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces guard based loop predication optimization. The new LoopPredication pass tries to convert loop variant range checks to loop invariant by widening checks across loop iterations. For example, it will convert
for (i = 0; i < n; i++) {
guard(i < len);
...
}
to
for (i = 0; i < n; i++) {
guard(n - 1 < len);
...
}
After this transformation the condition of the guard is loop invariant, so loop-unswitch can later unswitch the loop by this condition which basically predicates the loop by the widened condition:
if (n - 1 < len)
for (i = 0; i < n; i++) {
...
}
else
deoptimize
This patch relies on an NFC change to make ScalarEvolution::isMonotonicPredicate public (revision 293062).
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D29034
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293064 91177308-0d34-0410-b5e6-96231b3b80d8
clang already emits this with -cl-no-signed-zeros, but codegen
doesn't do anything with it. Treat it like the other fast math
attributes, and change one place to use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293024 91177308-0d34-0410-b5e6-96231b3b80d8
I found root class should be instantiated for variadic tempate to instantiate static member explicitly.
This will fix failures in mingw DLL build.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293017 91177308-0d34-0410-b5e6-96231b3b80d8
This surprisingly isn't NFC because there are patterns to select GPR
sub to SUBSWrr (rather than SUBWrr/rs); SUBS is later optimized to
SUB if NZCV is dead. From ISel's perspective, both are fine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293010 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This lets you select which sort of spilling you want, either s[0:1] or 64-bit loads from s[0:1].
Patch By: Dave Airlie
Reviewers: nhaehnle, arsenm, tstellarAMD
Reviewed By: arsenm
Subscribers: mareko, llvm-commits, kzhuravl, wdng, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D25428
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293000 91177308-0d34-0410-b5e6-96231b3b80d8
The comment in ISDOpcodes.h for EXTRACT_VECTOR_ELT now explains that the high
bits are undefined if the result is extended.
Review: Hal Finkel
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292933 91177308-0d34-0410-b5e6-96231b3b80d8
a lazy-asserting PoisoningVH.
AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.
This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.
The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.
The rest is straight cleanup.
I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.
Differential Revision: https://reviews.llvm.org/D29006
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292928 91177308-0d34-0410-b5e6-96231b3b80d8
AssertingVH that delays any reported error until the handle is *used*.
This allows data structures to contain handles which become dangling
provided the data structure is cleaned up afterward rather than used for
anything interesting.
The implementation is moderately horrible in part because it works to
leave AssertingVH in place, undisturbed. If at some point there is
consensus that this is simply how AssertingVH should be used, it can be
substantially simplified.
This remains a boring pointer in a non-asserts build as you would
expect. The only place we pay cost is in asserts builds.
I plan to use this as a basis for replacing the asserting VHs that
currently dangle in the new PM until invalidation occurs in both LVI and
SCEV.
Differential Revision: https://reviews.llvm.org/D29061
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292925 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This adds a cross-platform way of setting the current working directory
analogous to the existing current_path() function used for retrieving
it. The function will be used in lldb.
Reviewers: rafael, silvas, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29035
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292907 91177308-0d34-0410-b5e6-96231b3b80d8
This refactor allows parallel calls to be made via an arbitrary async call
dispatcher. In particular, this allows ParallelCallGroup to be used with
derived RPC classes that expose custom async RPC call operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292891 91177308-0d34-0410-b5e6-96231b3b80d8
Verifications of dominator tree and loop info are expensive operations
so they are disabled by default. They can be enabled by command line
options -verify-dom-info and -verify-loop-info. These options however
enable checks only in files Dominators.cpp and LoopInfo.cpp. If some
transformation changes dominaror tree and/or loop info, it would be
convenient to place similar checks to the files implementing the
transformation.
This change makes corresponding flags global, so they can be used in
any file to optionally turn verification on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292889 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This seemed to be an oversight seeing as DenseMap has these conversions.
This patch does the following:
- Adds a default constructor to the iterators.
- Allows DenseSet::ConstIterators to be copy constructed from DenseSet::Iterators
- Allows mutual comparison between Iterators and ConstIterators.
All of these are available in the DenseMap implementation, so the implementation here is trivial.
Reviewers: dblaikie, dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28999
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292879 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: promoteIndirectCall should be a utility function that could be invoked by other optimization passes.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29051
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292850 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292848 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
then run the old algorithm.
2) Do the right thing directly.
1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
convertFromString, next, convertToInteger, convertFromAPInt,
convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.
I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.
Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).
Differential Revision: https://reviews.llvm.org/D27872
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292839 91177308-0d34-0410-b5e6-96231b3b80d8
in llvm-objdump for Mach-O files add the printing of the
x86_thread_state32_t in the same format as
otool-classic(1) on darwin.
To do this the 32-bit x86 general tread state
needed to be defined in include/llvm/Support/MachO.h .
rdar://30110111
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292829 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add a new load command LC_BUILD_VERSION. It is a generic version of
LC_*_VERSION_MIN load_command used on Apple platforms. Instead of having
a seperate load command for each platform, LC_BUILD_VERSION is recording
platform info as an enum. It also records SDK version, min_os, and tools
that used to build the binary.
rdar://problem/29781291
Reviewers: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29044
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292824 91177308-0d34-0410-b5e6-96231b3b80d8
become unavailable.
The AssumptionCache is now immutable but it still needs to respond to
DomTree invalidation if it ended up caching one.
This lets us remove one of the explicit invalidates of LVI but the
other one continues to avoid hitting a latent bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292769 91177308-0d34-0410-b5e6-96231b3b80d8
logging pass and analyses information.
This is particularly useful when filtering the debug log for
a particular function or loop where something got inappropriately
cached.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292755 91177308-0d34-0410-b5e6-96231b3b80d8
I noticed that this function got called twice in compiled code to create succ_begin and succ_end iterators. Adding this directive helps the compiler share the call.
Ideally we'd just make this method available for inlining since its quite simple, but the current header file arrangements don't allow that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292754 91177308-0d34-0410-b5e6-96231b3b80d8