Previously in a vector of pointers, the pointer couldn't be any pointer type,
it had to be a pointer to an integer or floating point type. This is a hassle
for dragonegg because the GCC vectorizer happily produces vectors of pointers
where the pointer is a pointer to a struct or whatever. Vector getelementptr
was restricted to just one index, but now that vectors of pointers can have
any pointer type it is more natural to allow arbitrary vector getelementptrs.
There is however the issue of struct GEPs, where if each lane chose different
struct fields then from that point on each lane will be working down into
unrelated types. This seems like too much pain for too little gain, so when
you have a vector struct index all the elements are required to be the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167828 91177308-0d34-0410-b5e6-96231b3b80d8
This allows me to begin enabling (or backing out) misched by default
for one subtarget at a time. To run misched we typically want to:
- Disable SelectionDAG scheduling (use the source order scheduler)
- Enable more aggressive coalescing (until we decide to always run the coalescer this way)
- Enable MachineScheduler pass itself.
Disabling PostRA sched may follow for some subtargets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167826 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the math library call simplifications from the
simplify-libcalls pass into the instcombine library call simplifier.
I have typically migrated just one simplifier at a time, but the math
simplifiers are interdependent because:
1. CosOpt, PowOpt, and Exp2Opt all depend on UnaryDoubleFPOpt.
2. CosOpt, PowOpt, Exp2Opt, and UnaryDoubleFPOpt all depend on
the option -enable-double-float-shrink.
These two factors made migrating each of these simplifiers individually
more of a pain than it would be worth. So, I migrated them all together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167815 91177308-0d34-0410-b5e6-96231b3b80d8
For now be more conservative in case other out-of-tree schedulers rely
on the old behavior of artificial edges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167808 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a type 'int a[1]' and a type 'int b[0]', the generated DWARF is the
same for both of them because we use the 'upper_bound' attribute. Instead use
the 'count' attrbute, which gives the correct number of elements in the array.
<rdar://problem/12566646>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167806 91177308-0d34-0410-b5e6-96231b3b80d8
getNumContainedPasses() used to compute the size of the vector on demand. It is
called repeated in loops (such as runOnFunction()) and it can be updated while
inside the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167759 91177308-0d34-0410-b5e6-96231b3b80d8
Uses the infrastructure from r167742 to support clustering instructure
that the target processor can "fuse". e.g. cmp+jmp.
Next step: target hook implementations with test cases, and enable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167744 91177308-0d34-0410-b5e6-96231b3b80d8
This infrastructure is generally useful for any target that wants to
strongly prefer two instructions to be adjacent after scheduling.
A following checkin will add target-specific hooks with unit
tests. Then this feature will be enabled by default with misched.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167742 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for weak DAG edges to the general scheduling
infrastructure in preparation for MachineScheduler support for
heuristics based on weak edges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167738 91177308-0d34-0410-b5e6-96231b3b80d8
In some cases the library call simplifier may need to replace instructions
other than the library call being simplified. In those cases it may be
necessary for clients of the simplifier to override how the replacements
are actually done. As such, a new overrideable method for replacing
instructions was added to LibCallSimplifier.
A new subclass of LibCallSimplifier is also defined which overrides
the instruction replacement method. This is because the instruction
combiner defines its own replacement method which updates the worklist
when instructions are replaced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167681 91177308-0d34-0410-b5e6-96231b3b80d8
In the process of migrating optimizations from the simplify-libcalls pass
to the instcombine pass I noticed that a few functions are missing from
the target library information. These functions need to be available for
querying in the instcombine library call simplifiers. More functions will
probably be added in the future as more simplifiers are migrated to
instcombine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167659 91177308-0d34-0410-b5e6-96231b3b80d8
- Add RTM code generation support throught 3 X86 intrinsics:
xbegin()/xend() to start/end a transaction region, and xabort() to abort a
tranaction region
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167573 91177308-0d34-0410-b5e6-96231b3b80d8
values in a map that can be passed to consumers. Add a testcase that
ensures this works for llvm-dwarfdump.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167558 91177308-0d34-0410-b5e6-96231b3b80d8
misched is disabled by default. With -enable-misched, these heuristics
balance the schedule to simultaneously avoid saturating processor
resources, expose ILP, and minimize register pressure. I've been
analyzing the performance of these heuristics on everything in the
llvm test suite in addition to a few other benchmarks. I would like
each heuristic check to be verified by a unit test, but I'm still
trying to figure out the best way to do that. The heuristics are still
in considerable flux, but as they are refined we should be rigorous
about unit testing the improvements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167527 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds the interface to expose events from MCJIT when an object is emitted or freed and implements the MCJIT functionality to send those events. The IntelJITEventListener implementation is left empty for now. It will be fleshed out in a future patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167475 91177308-0d34-0410-b5e6-96231b3b80d8
Expose the processor resources defined by the machine model to the
scheduler and other clients through the TargetSchedule interface.
Normalize each resource count with respect to other kinds of
resources. This allows scheduling heuristics to balance resources
against other kinds of resources and latency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167444 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to this patch RuntimeDyld attempted to re-apply relocations every time reassignSectionAddress was called (via MCJIT::mapSectionAddress). In addition to being inefficient and redundant, this led to a problem when a section was temporarily moved too far away from another section with a relative relocation referencing the section being moved. To fix this, I'm adding a new method (finalizeObject) which the client can call to indicate that it is finished rearranging section addresses so the relocations can safely be applied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167400 91177308-0d34-0410-b5e6-96231b3b80d8
is that the unit test doesn't have IntTy equal to APInt, instead it uses a class
derived from APInt. When, as in these lines, an IntTy& reference is returned
but is assigned to an APInt&, the compiler destroys the temporary the IntTy& was
referring to, leaving the APInt& referring to garbage. This causes the unittest
to fail systematically on my machine; it can also be caught by running the test
under valgrind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167356 91177308-0d34-0410-b5e6-96231b3b80d8
InputArg in r165616.
This will enable us to get the actual type for both InputArg and OutputArg.
rdar://9932559
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167265 91177308-0d34-0410-b5e6-96231b3b80d8
the inttoptr instruction. The conceptual model here is that
'getAddressSpace' refers to the address space of this instruction's
type. It just happens that for GEPs, that is always the same as the
pointer operand's address space. We want both names so that access
patterns can be consistent between different instruction types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167229 91177308-0d34-0410-b5e6-96231b3b80d8
These clarify that the methods called 'getPointerAddressSpace' apply to
the pointer *operand* of the instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167228 91177308-0d34-0410-b5e6-96231b3b80d8
compute the address space in the one place it was used.
Also write the getPointerAddressSpace member in terms of the
getPointerOperandType member.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167226 91177308-0d34-0410-b5e6-96231b3b80d8
'@brief' doxygen markup to the now standard '\brief' markup form, in
conformance with the coding standards. This will let me continue to
write new comments in this form without making things inconsistent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167225 91177308-0d34-0410-b5e6-96231b3b80d8
politely and document this feature.
This simple API extension then allows us to write all of the
Instructions' address space query methods much more simply. No
functionality change intended here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167223 91177308-0d34-0410-b5e6-96231b3b80d8
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
Explicitly allow composition of null sub-register indices, and handle
that common case in an inlinable stub.
Use a compressed table implementation instead of the previous nested
switches which generated pretty bad code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167190 91177308-0d34-0410-b5e6-96231b3b80d8