Commit Graph

5 Commits

Author SHA1 Message Date
Evan Cheng
6557bce3ec VFP single precision arith instructions can go down to NEON pipeline, but on Cortex-A8 only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126238 91177308-0d34-0410-b5e6-96231b3b80d8
2011-02-22 19:53:14 +00:00
Evan Cheng
b72d2a92b7 Clean up ARM subtarget code by using Triple ADT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123276 91177308-0d34-0410-b5e6-96231b3b80d8
2011-01-11 21:46:47 +00:00
Andrew Trick
2da8bc8a5f Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.

Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.

Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.

Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.

ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.

ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-24 05:03:26 +00:00
Andrew Trick
6b1207267f Generalize PostRAHazardRecognizer so it can be used in any pass for
both forward and backward scheduling. Rename it to
ScoreboardHazardRecognizer (Scoreboard is one word). Remove integer
division from the scoreboard's critical path.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121274 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-08 20:04:29 +00:00
Evan Cheng
48575f6ea7 Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
   of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
   additional pipeline stall. So it's frequently better to single codegen
   vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
   stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
   vmla + vmla is very bad. But this isn't ideal either:
     vmul
     vadd
     vmla
   Instead, we want to expand the second vmla:
     vmla
     vmul
     vadd
   Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
   faster.

Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.

A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
   compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
   fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
   vmla / vmls will trigger one of the special hazards.

Work in progress, only A+B are enabled.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120960 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-05 22:04:16 +00:00