a) frame setup instructions define the prologue
b) we shouldn't change our location mid-stream
Add a test to make sure that the stack adjustment stays within
the prologue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165250 91177308-0d34-0410-b5e6-96231b3b80d8
multiple stores with a single load. We create the wide loads and stores (and their chains)
before we remove the scalar loads and stores and fix the DAG chain. We attempted to merge
loads with a different chain. When that happened, the assumption that it is safe to RAUW
broke and a cycle was introduced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165148 91177308-0d34-0410-b5e6-96231b3b80d8
is not profitable in many cases because modern processors perform multiple stores
in parallel and merging stores prior to merging requires extra work. We handle two main cases:
1. Store of multiple consecutive constants:
q->a = 3;
q->4 = 5;
In this case we store a single legal wide integer.
2. Store of multiple consecutive loads:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
In this case we load/store either ilegal vector registers or legal wide integer registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165125 91177308-0d34-0410-b5e6-96231b3b80d8
Enable the pass by default for targets that request it, and change the
-enable-early-ifcvt to the opposite -disable-early-ifcvt.
There are still some x86 regressions when enabling early if-conversion
because of the missing machine models. Disable the pass for x86 until
machine models are added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165075 91177308-0d34-0410-b5e6-96231b3b80d8
Reserved register live ranges look like a set of dead defs - any uses of
reserved registers are ignored.
Instead of skipping the updating of reserved register operands entirely,
just ignore the use operands and treat the def operands normally.
No test case, handleMove() is not commonly used yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165060 91177308-0d34-0410-b5e6-96231b3b80d8
JoinVals::pruneValues() calls LIS->pruneValue() to avoid conflicts when
overlapping two different values. This produces a set of live range end
points that are used to reconstruct the live range (with SSA update)
after joining the two registers.
When a value is pruned twice, the set of end points was insufficient:
v1 = DEF
v1 = REPLACE1
v1 = REPLACE2
KILL v1
The end point at KILL would only reconstruct the live range from
REPLACE2 to KILL, leaving the range REPLACE1-REPLACE2 dead.
Add REPLACE2 as an end point in this case so the full live range is
reconstructed.
This fixes PR13999.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165056 91177308-0d34-0410-b5e6-96231b3b80d8
the add/sub case since in the case of multiplication you also have to check that
the operation in the larger type did not overflow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165017 91177308-0d34-0410-b5e6-96231b3b80d8
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164910 91177308-0d34-0410-b5e6-96231b3b80d8
buildbots. Original commit message:
A DAGCombine optimization for merging consecutive stores. This optimization is not profitable in many cases
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164890 91177308-0d34-0410-b5e6-96231b3b80d8
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164885 91177308-0d34-0410-b5e6-96231b3b80d8
The new coalescer can turn a full virtual register definition into a
partial redef by merging another value into an unused vector lane.
Make sure to clear the <read-undef> flag on such defs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164807 91177308-0d34-0410-b5e6-96231b3b80d8
The fix is obvious and the only test case I have is horrible, so I am
not including it. The problem shows up when self-hosting clang on i386
with -new-coalescer enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164793 91177308-0d34-0410-b5e6-96231b3b80d8
The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164725 91177308-0d34-0410-b5e6-96231b3b80d8
scalar-to-vector conversion that we cannot handle. For instance, when an invalid
constraint is used in an inline asm statement.
<rdar://problem/12284092>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164662 91177308-0d34-0410-b5e6-96231b3b80d8
scalar-to-vector conversion that we cannot handle. For instance, when an invalid
constraint is used in an inline asm statement.
<rdar://problem/12284092>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164657 91177308-0d34-0410-b5e6-96231b3b80d8
Provide interface in TargetLowering to set or get the minimum number of basic
blocks whereby jump tables are generated for switch statements rather than an
if sequence.
getMinimumJumpTableEntries() defaults to 4.
setMinimumJumpTableEntries() allows target configuration.
This patch changes the default for the Hexagon architecture to 5
as it improves performance on some benchmarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164628 91177308-0d34-0410-b5e6-96231b3b80d8
Even out-of-line jump tables can be in the code section, so mark them
as data-regions for those targets which support the directives.
rdar://12362871&12362974
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164571 91177308-0d34-0410-b5e6-96231b3b80d8
care about it being an argument variable so that we can decide
that captured block and lambda vars that don't happen to
be arguments could be an argument pointer.
Add the object pointer for one case onto the subprogram die.
rdar://12001329
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164419 91177308-0d34-0410-b5e6-96231b3b80d8
because LiveStackAnalysis was not preserved by VirtRegWriter. This caused
big stack usage regression in some cases.
rdar://12340383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164408 91177308-0d34-0410-b5e6-96231b3b80d8
A PHI can't create interference on its own. If two live ranges interfere
at a PHI, they must also interfere when leaving one of the PHI
predecessors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164330 91177308-0d34-0410-b5e6-96231b3b80d8
The old-fashioned many-to-one value mapping doesn't always work when
merging vector lanes. A value can map to multiple different values, and
it can even be necessary to insert new PHIs.
When a value number is defined by a copy from a value number that
required SSa update, include the live range of the copied value number
in the SSA update as well. It is not necessarily a copy of the original
value number any longer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164329 91177308-0d34-0410-b5e6-96231b3b80d8
A common coalescing conflict in vector code is lane insertion:
%dst = FOO
%src = BAR
%dst:ssub0 = COPY %src
The live range of %src interferes with the ssub0 lane of %dst, but that
lane is never read after %src would have clobbered it. That makes it
safe to merge the live ranges and eliminate the COPY:
%dst = FOO
%dst:ssub0 = BAR
This patch teaches the new coalescer to resolve conflicts where dead
vector lanes would be clobbered, at least as long as the clobbered
vector lanes don't escape the basic block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164250 91177308-0d34-0410-b5e6-96231b3b80d8
store this and use it to not emit long nops when the CPU is geode which
doesnt support them.
Fixes PR11212.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164132 91177308-0d34-0410-b5e6-96231b3b80d8
Add LIS::pruneValue() and extendToIndices(). These two functions are
used by the register coalescer when merging two live ranges requires
more than a trivial value mapping as supported by LiveInterval::join().
The pruneValue() function can remove the part of a value number that is
going to conflict in join(). Afterwards, extendToIndices can restore the
live range, using any new dominating value numbers and updating the SSA
form.
Use this complex value mapping to support merging a register into a
vector lane that has a conflicting value, but the clobbered lane is
undef.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164074 91177308-0d34-0410-b5e6-96231b3b80d8
These extra operands are not needed by register allocators using
VirtRegRewriter, and RAFast don't need them any longer.
By omitting the <imp-def> operands, it becomes possible for the new
register coalescer to track which lanes are valid and which are undef.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164073 91177308-0d34-0410-b5e6-96231b3b80d8
The live range of an SSA value forms a sub-tree of the dominator tree.
That means the live ranges of two values overlap if and only if the def
of one value lies within the live range of the other.
This can be used to simplify the interference checking a bit: Visit each
def in the two registers about to be joined. Check for interference
against the value that is live in the other register at the def point
only. It is not necessary to scan the set of overlapping live ranges,
this interference check can be done while computing the value mapping
required for the final live range join.
The new algorithm is prepared to handle more complicated conflict
resolution - We can allow overlapping live ranges with different values
as long as the differing lanes are undef or unused in the other
register.
The implementation in this patch doesn't do that yet, it creates code
that is nearly identical to the old algorithm's, except:
- The new stripCopies() function sees through multiple copies while
the old RegistersDefinedFromSameValue() only can handle one.
- There are a few rare cases where the new algorithm can erase an
IMPLICIT_DEF instuction that RegistersDefinedFromSameValue() couldn't
handle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163991 91177308-0d34-0410-b5e6-96231b3b80d8
Kill flags are removed more and more aggressively during the register
allocation passes, it is better to get information from LiveIntervals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163972 91177308-0d34-0410-b5e6-96231b3b80d8
- Find a legal vector type before casting and extracting element from it.
- As the new vector type may have more than 2 elements, build the final
hi/lo pair by BFS pairing them from bottom to top.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163830 91177308-0d34-0410-b5e6-96231b3b80d8
by xoring the high-bit. This fails if the source operand is a vector because we need to negate
each of the elements in the vector.
Fix rdar://12281066 PR13813.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163802 91177308-0d34-0410-b5e6-96231b3b80d8
are within the lifetime zone. Sometime legitimate usages of allocas are
hoisted outside of the lifetime zone. For example, GEPS may calculate the
address of a member of an allocated struct. This commit makes sure that
we only check (abort regions or assert) for instructions that read and write
memory using stack frames directly. Notice that by allowing legitimate
usages outside the lifetime zone we also stop checking for instructions
which use derivatives of allocas. We will catch less bugs in user code
and in the compiler itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163791 91177308-0d34-0410-b5e6-96231b3b80d8
Add some support for dealing with an object pointer on arguments.
Part of rdar://9797999
which now supports adding the object pointer attribute to the
subprogram as it should.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163754 91177308-0d34-0410-b5e6-96231b3b80d8
- BlockAddress has no support of BA + offset form and there is no way to
propagate that offset into machine operand;
- Add BA + offset support and a new interface 'getTargetBlockAddress' to
simplify target block address forming;
- All targets are modified to use new interface and X86 backend is enhanced to
support BA + offset addressing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163743 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget);
should not be used when Val is not a simple constant (as the comment in
SelectionDAG.h indicates). This patch avoids using this function
when folding an unknown constant through a bitcast, where it cannot be
guaranteed that Val will be a simple constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163703 91177308-0d34-0410-b5e6-96231b3b80d8
The search for liveness is clipped to a specific number of instructions around the target MachineInstr, in order to avoid degenerating into an O(N^2) algorithm. It tries to use various clues about how instructions around (both before and after) a given MachineInstr use that register, to determine its state at the MachineInstr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163695 91177308-0d34-0410-b5e6-96231b3b80d8
findLastUseBefore was previous considering virtreg liveness only, leading to
incorrect live intervals for reg units when instrs with physreg operands were
moved up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163685 91177308-0d34-0410-b5e6-96231b3b80d8
The input program may contain intructions which are not inside lifetime
markers. This can happen due to a bug in the compiler or due to a bug in
user code (for example, returning a reference to a local variable).
This commit adds checks that all of the instructions in the function and
invalidates lifetime ranges which do not contain all of the instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163678 91177308-0d34-0410-b5e6-96231b3b80d8