SystemZ (and probably other targets as well) can fold a memory operand
by changing the opcode into a new instruction that as a side-effect
also clobbers the CC-reg.
In order to do this, liveness of that reg must first be checked. When
LIS is passed, getRegUnit() can be called on it and the right
LiveRange is computed on demand.
Reviewed by Matthias Braun.
http://reviews.llvm.org/D19861
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269026 91177308-0d34-0410-b5e6-96231b3b80d8
Allow vectorization when the step is a loop-invariant variable.
This is the loop example that is getting vectorized after the patch:
int int_inc;
int bar(int init, int *restrict A, int N) {
int x = init;
for (int i=0;i<N;i++){
A[i] = x;
x += int_inc;
}
return x;
}
"x" is an induction variable with *loop-invariant* step.
But it is not a primary induction. Primary induction variable with non-constant step is not handled yet.
Differential Revision: http://reviews.llvm.org/D19258
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269023 91177308-0d34-0410-b5e6-96231b3b80d8
We now use LiveRangeCalc::extendToUses() instead of a specially designed
algorithm in constructMainRangeFromSubranges():
- The original motivation for constructMainRangeFromSubranges() were
differences between the main liverange and subranges because of hidden
dead definitions. This case however cannot happen anymore with the
DetectDeadLaneMasks pass in place.
- It simplifies the code.
- This fixes a longstanding bug where we did not properly create new SSA
values on merging control flow (the MachineVerifier missed most of
these cases).
- Move constructMainRangeFromSubranges() to LiveIntervalAnalysis and
LiveRangeCalc to better match the implementation/available helper
functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269016 91177308-0d34-0410-b5e6-96231b3b80d8
In -run-pass mode verify/print machine function immediately after
loading the .mir file if -verify-machineinstr/-print-machineinstrs
option is specified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269014 91177308-0d34-0410-b5e6-96231b3b80d8
Move the register stackification and coloring passes to run very late, after
PEI, tail duplication, and most other passes. This means that all code emitted
and expanded by those passes is now exposed to these passes. This also
eliminates the need for prologue/epilogue code to be manually stackified,
which significantly simplifies the code.
This does require running LiveIntervals a second time. It's useful to think
of these late passes not as late optimization passes, but as a domain-specific
compression algorithm based on knowledge of liveness information. It's used to
compress the code after all conventional optimizations are complete, which is
why it uses LiveIntervals at a phase when actual optimization passes don't
typically need it.
Differential Revision: http://reviews.llvm.org/D20075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269012 91177308-0d34-0410-b5e6-96231b3b80d8
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269011 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The idea is very close to what we do for assume intrinsics: we mark the
guard intrinsics as writing to arbitrary memory to maintain control
dependence, but under the covers we teach AA that they do not mod any
particular memory location.
Reviewers: chandlerc, hfinkel, gbiv, reames
Subscribers: george.burgess.iv, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19575
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269007 91177308-0d34-0410-b5e6-96231b3b80d8
Looks like you need the complete definition of "X" when calling a "X
&func()" declared function even when not using the result further.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269006 91177308-0d34-0410-b5e6-96231b3b80d8
We now construct a custom pass pipeline instead of injecting
start-before/stop-after into the default pipeline construction. This
allows to specify any pass known to the pass registry. Previously
specifying indirectly added analysis passes or passes not added to the
pipeline add all would not be added and we would silently do nothing.
This also restricts the -run-pass option to cases with .mir input.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269003 91177308-0d34-0410-b5e6-96231b3b80d8
Add convenience function to create MachineModuleInfo and
MachineFunctionAnalysis passes and add them to a pass manager.
Despite factoring out some shared code in
LiveIntervalTest/LLVMTargetMachine this will be used by my upcoming llc
change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269002 91177308-0d34-0410-b5e6-96231b3b80d8
When loading or storing AVX512 registers we were not using the AVX512
variant of the load and store for VR128 and VR256 like registers.
Thus, we ended up with the wrong encoding and actually were dropping the
high bits of the instruction. The result was that we load or store the
wrong register. The effect is visible only when we emit the object file
directly and disassemble it. Then, the output of the disassembler does
not match the assembly input.
This is related to llvm.org/PR27481.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269001 91177308-0d34-0410-b5e6-96231b3b80d8
We can use calls to @llvm.experimental.guard to prove predicates,
relying on the fact that in all locations domianted by a call to
@llvm.experimental.guard the predicate it is guarding is known to be
true.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268997 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Previously these intrinsics were marked as can-read any memory address.
Now they're marked as reading only the pointer they're passed.
Reviewers: rnk
Subscribers: jholewinski, llvm-commits, tra
Differential Revision: http://reviews.llvm.org/D20080
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268996 91177308-0d34-0410-b5e6-96231b3b80d8
Previously it was just "// inline asm", which made it tricky to read
code with lots of inline assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268994 91177308-0d34-0410-b5e6-96231b3b80d8
Currently the signature of the functions
i128(i128, i32) aka void(i32, i64, i64, i32) doesn't match the signature
of the call emitted by the default lowering, void(i32, i64, i64).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268991 91177308-0d34-0410-b5e6-96231b3b80d8
The call to Select on Upper here happens in an unusual order in order
to defeat the constant folding that getNode() does. Add a comment
explaining why we can't just move the Select to later to avoid a
Handle, and wrap the call to SelectCode in a handle so we don't need
its return value.
This is part of the work to have Select return void instead of an
SDNode *, which is in turn part of llvm.org/pr26808.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268990 91177308-0d34-0410-b5e6-96231b3b80d8
When we encounter unsafe memory dependencies, loop distribution could
help.
Even though, the diagnostics is in LAA, it's only currently emitted in
the vectorizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268987 91177308-0d34-0410-b5e6-96231b3b80d8
We used to list registers that were not in the AVX space. In other
words, we were pushing registers that the ISA cannot encode
(YMM16-YMM31).
This is part of llvm.org/PR27481.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268983 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to r268953, but for floating point and vector register
classes.
Explanations:
The setting of the inline asm constraints was implicitly relying on the
order of the register classes in the file generated by tablegen.
Since, we do not have any control on that order, make sure we do not
depend on it anymore.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268973 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on PR24888, until SSE42 we don't have access to PCMPGTQ for v2i64 comparisons, but the cost models don't reflect this, resulting in over-optimistic vectorizaton.
This patch adds SSE2 'base level' costs that match what a typical target is capable of and only reduces the v2i64 costs at SSE42.
Technically SSE41 provides a PCMPEQQ v2i64 equality test, but as getCmpSelInstrCost doesn't give us a way to discriminate between comparison test types we can't easily make use of this, otherwise we could split the cost of integer equality and greater-than tests to give better costings of each.
Differential Revision: http://reviews.llvm.org/D20057
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268972 91177308-0d34-0410-b5e6-96231b3b80d8
IR instrumentation generates a COMDAT symbol __llvm_profile_raw_version to
overwrite the same symbol in profile run-time to distinguish IR profiles from
Clang generated profiles. In MACHO, LinkOnceODR linkage is used due to the
lack of COMDAT support.
But LinkOnceODR linkage might have .weak_def_can_be_hidden assembly directive,
while the weak variable in run-time has a .weak_definition directive. Linker
will not merge these two symbols even they have the same name. The end result
is IR profiles are not properly flagged in MACHO.
This patch changes the linkage for __llvm_profile_raw_version in each module to
LinkOnceAny so that it has same .weak_definition directive as in the run-time.
Differential Revision: http://reviews.llvm.org/D20078
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268969 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes http://llvm.org/PR27646 on AArch64.
There are three issues here:
- The GR save area is 7 words in size, instead of 8. This is not enough
if none of the fixed arguments is passed in GRs (they're all floats or
aggregates).
- The first argument is ignored (which counteracts the above if it's passed
in GR).
- Like x86_64, fixed arguments landing in the overflow area are wrongly
counted towards the overflow offset.
Differential Revision: http://reviews.llvm.org/D20023
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268967 91177308-0d34-0410-b5e6-96231b3b80d8
allow the transformation to strip invalid debug info.
This patch separates the Verifier into an analysis and a transformation
pass, with the transformation pass optionally stripping malformed
debug info.
The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about
breaking bitcode compatibility with existing producers. For example, we
don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.
http://reviews.llvm.org/D19988
rdar://problem/25818489
This reapplies r268937 without modifications.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268966 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a new option -lto-strip-invalid-debug-info, which
drops malformed debug info from the input.
The problem I'm trying to solve with this sequence of patches is that
historically we've done a really bad job at verifying debug info. We want
to be able to make the verifier stricter without having to worry about
breaking bitcode compatibility with existing producers. For example, we
don't necessarily want IR produced by an older version of clang to be
rejected by an LTO link just because of malformed debug info, and rather
provide an option to strip it. Note that merely outdated (but well-formed)
debug info would continue to be auto-upgraded in this scenario.
rdar://problem/25818489
http://reviews.llvm.org/D19987
This reapplies 268936 with a test case fix for Linux (-exported-symbol foo)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268965 91177308-0d34-0410-b5e6-96231b3b80d8
The only 64-bit register in that register class is RIP and it will not
get spilled in the current ABIs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268963 91177308-0d34-0410-b5e6-96231b3b80d8