This avoids unnecessarily passing them around when calling helper
functions. It may also be slightly faster to call clear() on the
datastructures instead of freshly initializing them for each block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261407 91177308-0d34-0410-b5e6-96231b3b80d8
tests over to exercise this code.
This uncovered a few missing bits here and there in the analysis, but
nothing interesting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261404 91177308-0d34-0410-b5e6-96231b3b80d8
it to actually test the new pass manager AA wiring.
This patch was extracted from the (somewhat too large) D12357 and
rebosed on top of the slightly different design of the new pass manager
AA wiring that I just landed. With this we can start testing the AA in
a thorough way with the new pass manager.
Some minor cleanups to the code in the pass was necessitated here, but
otherwise it is a very minimal change.
Differential Revision: http://reviews.llvm.org/D17372
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261403 91177308-0d34-0410-b5e6-96231b3b80d8
Cleanuppads may be merged together if one is the only predecessor of the
other in which case a simple transform can be performed: replace the
a cleanupret with a branch and remove an unnecessary cleanuppad.
Differential Revision: http://reviews.llvm.org/D17459
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261390 91177308-0d34-0410-b5e6-96231b3b80d8
TLSADDR nodes are lowered into actuall calls inside MC. In order to prevent
shrink-wrapping from pushing prologue/epilogue past them (which result
in TLS variables being accessed before the stack frame is set up), we
put markers, so that the stack gets adjusted properly.
Thanks to Quentin Colombet for guidance/help on how to fix this problem!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261387 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Instead of trying to replace SMRD instructions with a VGPR base pointer
with an equivalent MUBUF instruction, we now copy the base pointer to
SGPRs using v_readfirstlane.
This is safe to do, because any load selected as an SMRD instruction
has been proven to have a uniform base pointer, so each thread in the
wave will have the same pointer value in VGPRs.
This will fix some errors on VI from trying to replace SMRD instructions
with addr64-enabled MUBUF instructions that don't exist.
Reviewers: arsenm, cfang, nhaehnle
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17305
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261385 91177308-0d34-0410-b5e6-96231b3b80d8
Figured this would be a problem, but didn't want to jump the gun - large
inputs demonstrate it pretty easily (mostly for type units, but might as
well do the same for CUs too). A random sample 6m27s -> 27s change.
Also, by checking this up-front for CUs (rather than when building the
cu_index) we can probably provide better error messages (see FIXMEs),
hopefully providing the name of the CUs rather than just their
signature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261364 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When optimizing for size, sqrt calls can be incorrectly selected as
AVX512 VSQRT instructions. This is because X86InstrAVX512.td has a
`Requires<[OptForSize]>` in its `avx512_sqrt_scalar` multiclass
definition. Even if the target does not support AVX512, the class can
apparently still be chosen, leading to an incorrect selection of
`vsqrtss`.
In PR26625, this lead to an assertion: Reg >= X86::FP0 && Reg <=
X86::FP6 && "Expected FP register!", because the `vsqrtss` instruction
requires an XMM register, which is not available on i686 CPUs.
Reviewers: grosbach, resistor, joker.eph
Subscribers: spatel, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D17414
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261360 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we don't always add an element to AllocatedStackSlots if we
don't find a pre-existing unallocated stack slot, bumping
StatepointMaxSlotsRequired to `NumSlots + 1` is not correct. Instead
bump the statistic near the push_back, to
Builder.FuncInfo.StatepointStackSlots.size().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261348 91177308-0d34-0410-b5e6-96231b3b80d8
The check on MFI->getObjectSize() has to be on the FrameIndex, not on
the index of the FrameIndex in AllocatedStackSlots. Weirdly, the tests
I added in rL261336 didn't catch this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261347 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables the vectorization of first-order recurrences. A first-order
recurrence is a non-reduction recurrence relation in which the value of the
recurrence in the current loop iteration equals a value defined in the previous
iteration. The load PRE of the GVN pass often creates these recurrences by
hoisting loads from within loops.
In this patch, we add a new recurrence kind for first-order phi nodes and
attempt to vectorize them if possible. Vectorization is performed by shuffling
the values for the current and previous iterations. The vectorization cost
estimate is updated to account for the added shuffle instruction.
Contributed-by: Matthew Simpson and Chad Rosier <mcrosier@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D16197
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261346 91177308-0d34-0410-b5e6-96231b3b80d8
NFCI. They key motivation here is that I'd like to use
SmallBitVector::all() in a later change. Also, using a bit vector here
seemed better in general.
The only interesting change here is that in the failure case of
allocateStackSlot, we no longer (the equivalent of) push_back(true) to
AllocatedStackSlots. As far as I can tell, this is fine, since we'd
never re-use those slots in the same StatepointLoweringState instance.
Technically there was no need to change the operator[] type accesses to
set() and test(), but I thought it'd be nice to make it obvious that
we're using something other than a std::vector like thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261337 91177308-0d34-0410-b5e6-96231b3b80d8
allocateStackSlot did not consider the size of the value to be spilled
before deciding to re-use a spill slot. This was originally okay (since
originally we'd only ever spill pointers), but it became not okay when
we changed our scheme to directly spill vectors of pointers.
While this change fixes the bug pointed out, it has two performance
caveats:
- It matches spill slot and spillee size exactly, while in theory we
can spill, e.g., an 8 byte pointer into a 16 byte slot. This is
slightly complicated to fix since in the stackmaps section, we report
the size of the spill slot as the size of the "indirect value"; and
if they're no longer equivalent, we'll have to keep track of the
(indirect) value size separately from the stack slot size.
- It will "spuriously run out" of reusable slots, since we now have an
second check in the search loop in addition to the availablity
check (e.g. you had two free scalar slots, and you first ask for a
vector slot followed by a scalar slot). I'll fix this in a later
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261336 91177308-0d34-0410-b5e6-96231b3b80d8
This removes the unusual loop structure in allocateStackSlot in favor of
something more straightforward. I've also removed the cautionary
comment in the function, which I suspect is historical cruft now, and
confuses more than it enlightens.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261335 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If we don't have the first and last access of an interleaved load group,
the first and last wide load in the loop can do an out of bounds
access. Even though we discard results from speculative loads,
this can cause problems, since it can technically generate page faults
(or worse).
We now discard interleaved load groups that don't have the first and
load in the group.
Reviewers: hfinkel, rengolin
Subscribers: rengolin, llvm-commits, mzolotukhin, anemet
Differential Revision: http://reviews.llvm.org/D17332
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261331 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This was broken in r260694 which swapped the address and data operands
for flat store instructions. The code in SIInsertWaits assumes
that the data operand always comes before the address operand, so
we need to add a special case for flat.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17366
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261330 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on PR24580, this patch adds some (more to come) initial fast-isel codegen tests to match the IR generated in clang/test/CodeGen/avx-builtins.c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261329 91177308-0d34-0410-b5e6-96231b3b80d8
According to the SystemZ ABI, 128-bit integer types should be
passed and returned via implicit reference. However, this is
not currently implemented at the LLVM IR level for the i128
type. This does not matter when compiling C/C++ code, since
clang will implement the implicit reference itself.
However, it turns out that when calling libgcc helper routines
operating on 128-bit integers, LLVM will use i128 argument and
return value types; the resulting code is not compatible with
the ABI used in libgcc, leading to crashes (see PR26559).
This should be simple to fix, except that i128 currently is not
even a legal type for the SystemZ back end. Therefore, common
code will already split arguments and return values into multiple
parts. The bulk of this patch therefore consists of detecting
such parts, and correctly handling passing via implicit reference
of a value split into multiple parts. If at some time in the
future, i128 becomes a legal type, this code can be removed again.
This fixes PR26559.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261325 91177308-0d34-0410-b5e6-96231b3b80d8
routine.
We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.
The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.
With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.
I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.
LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.
Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.
Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!
Differential Revision: http://reviews.llvm.org/D17435
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261316 91177308-0d34-0410-b5e6-96231b3b80d8
especially the *structure* of it with respect to various pass managers.
This uncovers an absolute horror show of problems. This test shows just
how bad PR24804 is: we have a totaly of *seven* loop pass managers in
the main optimization pipeline.
I've tried to comment the various bits to the best of my knowledge, but
more enhancements here would be great.
Also great would be folks adding various test for other pipelines, I'm
focused on trying to fix the O2 pipeline. I just wanted a test to show
what I'm changing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261305 91177308-0d34-0410-b5e6-96231b3b80d8
Certain optimization passes (like globaldce) can prune function
declaration that SjLjEHPrepare assumed would exit when it'd
runOnFunction.
This fixes PR26669.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261303 91177308-0d34-0410-b5e6-96231b3b80d8
more places to prevent gratuitous re-"runs" of these passes.
The passes themselves don't do any work when run, but we keep spending
time scheduling and running these needlessly when we really don't need
to do so.
This is the first patch towards fixing the really horrible loop pass
pipeline fragmentation pointed out by Sanjoy in PR24804.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261302 91177308-0d34-0410-b5e6-96231b3b80d8