Earlier this summer I fixed an issue where we were incorrectly combining
multiple loads that had different constraints such alignment, invariance,
temporality, etc. Apparently in one case I made copt paste error and swapped
alignment and invariance.
Tests included.
rdar://18816719
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220933 91177308-0d34-0410-b5e6-96231b3b80d8
The langref says:
LLVM explicitly allows declarations of global variables to be marked
constant, even if the final definition of the global is not. This
capability can be used to enable slightly better optimization of the
program, but requires the language definition to guarantee that
optimizations based on the ‘constantness’ are valid for the
translation units that do not include the definition.
Given that definition, when merging two declarations, we have to drop
constantness if of of them is not marked contant, since the Module
without the constant marker might not have the necessary guarantees.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220927 91177308-0d34-0410-b5e6-96231b3b80d8
If we load from a location with range metadata, we can use information about the ranges of the loaded value for optimization purposes. This helps to remove redundant checks and canonicalize checks for other optimization passes. This particular patch checks whether a value is known to be non-zero from the range metadata.
Currently, these tests are against InstCombine. In theory, all of these should be InstSimplify since we're not inserting any new instructions. Moving the code may follow in a separate change.
Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D5947
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220925 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch finishes up support for handling sampling profiles in both
text and binary formats. The new binary format uses uleb128 encoding to
represent numeric values. This makes profiles files about 25% smaller.
The profile writer class can write profiles in the existing text and the
new binary format. In subsequent patches, I will add the capability to
read (and perhaps write) profiles in the gcov format used by GCC.
Additionally, I will be adding support in llvm-profdata to manipulate
sampling profiles.
There was a bit of refactoring needed to separate some code that was in
the reader files, but is actually common to both the reader and writer.
The new test checks that reading the same profile encoded as text or
raw, produces the same results.
Reviewers: bogner, dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6000
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220915 91177308-0d34-0410-b5e6-96231b3b80d8
It should be on for every target that supports unaligned accesses (e.g. not
v6m).
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220912 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The previous calling convention prevented custom functions from being able
to access argument labels unless it knew how many variadic arguments there
were, and of which type. This restriction made it impossible to correctly
model functions in the printf family, as it is legal to pass more arguments
than required to those functions. We now pass arguments in the following order:
non-vararg arguments
labels for non-vararg arguments
[if vararg function, pointer to array of labels for vararg arguments]
[if non-void function, pointer to label for return value]
vararg arguments
Differential Revision: http://reviews.llvm.org/D6028
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220906 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to this commit, the Llvm_target tests (ab)used
the Llvm_executionengine as a mechanism to initialize at least some
target. This needlessly restricted tests to builds which can emit
code for their host architecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220901 91177308-0d34-0410-b5e6-96231b3b80d8
This commit updates the OCaml bindings and tests to use ocamlfind.
The bindings are migrated in order to use ctypes, which are now
required for MCJIT-backed Llvm_executionengine.
The tests are migrated in order to use OUnit and to verify that
the distributed META.llvm allows to build working executables.
Every OCaml toolchain invocation is now chained through ocamlfind,
which (in theory) allows to cross-compile the OCaml bindings.
The configure script now checks for ctypes (>= 0.2.3) and
OUnit (>= 2). The code depending on these libraries will be added
later. The configure script does not check the package versions
in order to keep changes less invasive.
Additionally, OCaml bindings will now be automatically enabled
if ocamlfind is detected on the system, rather than ocamlc, as it
was before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220899 91177308-0d34-0410-b5e6-96231b3b80d8
The also-emit-llvm option only supported getting the IR before optimizations.
This patch replaces it with a more generic save-temps option that saves the IR
both before and after optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220885 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This helps llvm-objdump -r to print out the symbol name along
with the relocation type on x86. Adjust existing tests from checking
for "Unknown" to check for the symbol now.
Test Plan: Adjusted test/Object tests.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5987
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220866 91177308-0d34-0410-b5e6-96231b3b80d8
In practice this means:
* Always using -g flag.
* Embedding -cclib -lstdc++ into the corresponding cma/cmxa file.
This also moves -lstdc++ in a single place.
* Using caml_named_value instead of a homegrown mechanism.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220843 91177308-0d34-0410-b5e6-96231b3b80d8
For example, MS PSDK is not expected to have <cxxabi.h>.
You should introduce the new feature in lit.cfg corresponding to HAVE_CXXABI_H if you would like to test demangler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220840 91177308-0d34-0410-b5e6-96231b3b80d8
Remove pointless checks for storage of uninteresting values. Ensure that we
perform basic alias analysis to make the test more correct. Finally, apply a
stylistic change to the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220839 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, tests hardcoded ocamlopt and cmxa, which broke builds on
machines without ocamlopt. Instead, they now fall back to ocamlc.
As a side effect this fixes PR14727, which was caused by a crude hack
that replaced gcc with g++ everywhere in the ocamlopt native compiler
path and passes it back using -cc. Now the tests use the same
technique as META, i.e. -cclib -lstdc++. It might be more fragile
than using g++ explicitly, but it will break when the installed
package will also break, which is good.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220828 91177308-0d34-0410-b5e6-96231b3b80d8
This restores the commit from SVN r219899 with an additional change to ensure
that the CodeGen is correct for the case that was identified as being incorrect
(originally PR7272).
In the case that during inlining we need to synthesize a value on the stack
(i.e. for passing a value byval), then any function involving that alloca must
be stripped of its tailness as the restriction that it does not access the
parent's stack no longer holds. Unfortunately, a single alloca can cause a
rippling effect through out the inlining as the value may be aliased or may be
mutated through an escaped external call. As such, we simply track if an alloca
has been introduced in the frame during inlining, and strip any tail calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220811 91177308-0d34-0410-b5e6-96231b3b80d8
This transformation worked if selector is produced by SETCC, however SETCC is needed only if we consider to swap operands. So I replaced SETCC check for this case.
Added tests for vselect of <X x i1> values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220777 91177308-0d34-0410-b5e6-96231b3b80d8
Ffter commit at rev219046 512-bit broadcasts lowering become non-optimal. Most of tests on broadcasting and embedded broadcasting were changed and they doesn’t produce efficient code.
Example below is from commit changes (it’s the first test from test/CodeGen/X86/avx512-vbroadcast.ll):
define <16 x i32> @_inreg16xi32(i32 %a) {
; CHECK-LABEL: _inreg16xi32:
; CHECK: ## BB#0:
-; CHECK-NEXT: vpbroadcastd %edi, %zmm0
+; CHECK-NEXT: vmovd %edi, %xmm0
+; CHECK-NEXT: vpbroadcastd %xmm0, %ymm0
+; CHECK-NEXT: vinserti64x4 $1, %ymm0, %zmm0, %zmm0
; CHECK-NEXT: retq
%b = insertelement <16 x i32> undef, i32 %a, i32 0
%c = shufflevector <16 x i32> %b, <16 x i32> undef, <16 x i32> zeroinitializer
ret <16 x i32> %c
}
Here, 256-bit broadcast was generated instead of 512-bit one.
In this patch
1) I added vector-shuffle lowering through broadcasts
2) Removed asserts and branches likes because this is incorrect
- assert(Subtarget->hasDQI() && "We can only lower v8i64 with AVX-512-DQI");
3) Fixed lowering tests
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220774 91177308-0d34-0410-b5e6-96231b3b80d8
This is a Microsoft calling convention that supports both x86 and x86_64
subtargets. It passes vector and floating point arguments in XMM0-XMM5,
and passes them indirectly once they are consumed.
Homogenous vector aggregates of up to four elements can be passed in
sequential vector registers, but this part is not implemented in LLVM
and will be handled in Clang.
On 32-bit x86, it is similar to fastcall in that it uses ecx:edx as
integer register parameters and is callee cleanup. On x86_64, it
delegates to the normal win64 calling convention.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D5943
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220745 91177308-0d34-0410-b5e6-96231b3b80d8
Benchmarks have shown that it's harmless to the performance there, and having a
unified set of passes between the two cores where possible helps big.LITTLE
deployment.
Patch by Z. Zheng.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220744 91177308-0d34-0410-b5e6-96231b3b80d8
This is implemented via a multiclass that derives from the vperm imm
multiclass.
Fixes <rdar://problem/18426089>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220737 91177308-0d34-0410-b5e6-96231b3b80d8
For a call to not return in to the stackmap shadow, the shadow must end with the call.
To do this, we must insert any required nops *before* the call, and not after it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220728 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minor change to use the immediate version when the operand is a null
value. This should get rid of an unnecessary 'mov' instruction in debug
builds and align the code more with the one generated by SelectionDAG.
This fixes rdar://problem/18785125.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220713 91177308-0d34-0410-b5e6-96231b3b80d8
Minor enhancement to use 'tbz' for i1 compare-and-branch to get rid of an 'and'
instruction.
This fixes rdar://problem/18784953.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220712 91177308-0d34-0410-b5e6-96231b3b80d8
To avoid emitting too many nops, a stackmap shadow can include emitted instructions in the shadow, but these must not include branch targets.
A return from a call should count as a branch target as patching over the instructions after the call would lead to incorrect behaviour for threads currently making that call, when they return.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220710 91177308-0d34-0410-b5e6-96231b3b80d8
The pattern matching for a 'ConstantInt' value was too restrictive. Checking for
a 'Constant' with a bull value is sufficient for using an 'cbz/cbnz' instruction.
This fixes rdar://problem/18784732.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220709 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a bug where the input register was not defined for the 'tbz/tbnz'
instruction. This happened, because we folded the 'and' instruction from a
different basic block.
This fixes rdar://problem/18784013.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220704 91177308-0d34-0410-b5e6-96231b3b80d8
At higher optimization levels the LLVM IR may contain more complex patterns for
loads/stores from/to frame indices. The 'computeAddress' function wasn't able to
handle this and triggered an assertion.
This fix extends the possible addressing modes for frame indices.
This fixes rdar://problem/18783298.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220700 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, the ARM backend will select the VMAXNM and VMINNM for these C
expressions:
(a < b) ? a : b
(a > b) ? a : b
but not these expressions:
(a > b) ? b : a
(a < b) ? b : a
This patch allows all of these expressions to be matched.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220671 91177308-0d34-0410-b5e6-96231b3b80d8
An icmp may have pointer arguments, it isn't limited to integers or
vectors of integers.
This fixes PR21388.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220664 91177308-0d34-0410-b5e6-96231b3b80d8
First, return true on success, as it is the OCaml convention.
Second, also initialize the native assembly printer, which is,
despite the name, required for MCJIT operation.
Since this function did not initialize the assembly printer earlier
and no function to initialize native assembly printer was available
elsewhere, it is safe to break its interface: it means that it
simply could not be used successfully before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220620 91177308-0d34-0410-b5e6-96231b3b80d8
The dividend in "signed % unsigned" is treated as unsigned instead of signed,
causing unexpected behavior such as -64 % (uint64_t)24 == 0.
Added a regression test in split-gep.ll
Patched by Hao Liu.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220618 91177308-0d34-0410-b5e6-96231b3b80d8
The two operands of the new OR expression should be NextInChain and TheOther
instead of the two original operands.
Added a regression test in split-gep.ll.
Hao Liu reported this bug, and provded the test case and an initial patch.
Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220615 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Fixes PR21100 which is caused by inconsistency between the declared return type
and the expected return type at the call site. The new behavior is consistent
with nvcc and the NVPTXTargetLowering::getPrototype function.
Test Plan: test/Codegen/NVPTX/vector-return.ll
Reviewers: jholewinski
Reviewed By: jholewinski
Subscribers: llvm-commits, meheff, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D5612
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220607 91177308-0d34-0410-b5e6-96231b3b80d8
In a Mach-O object file a relocatable expression of the form
SymbolA - SymbolB + constant is allowed when both symbols are
defined in a section. But when either symbol is undefined it
is an error.
The code was crashing when it had an undefined symbol in this case.
And should have printed a error message using the location information
in the relocation entry.
rdar://18678402
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220599 91177308-0d34-0410-b5e6-96231b3b80d8
Minor patch to fix an issue in XFormVExtractWithShuffleIntoLoad where a load is unary shuffled, then bitcast (to a type with the same number of elements) before extracting an element.
An undef was created for the second shuffle operand using the original (post-bitcasted) vector type instead of the pre-bitcasted type like the rest of the shuffle node - this was then causing an assertion on the different types later on inside SelectionDAG::getVectorShuffle.
Differential Revision: http://reviews.llvm.org/D5917
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220592 91177308-0d34-0410-b5e6-96231b3b80d8
This is a first step for generating SSE rsqrt instructions for
reciprocal square root calcs when fast-math is allowed.
For now, be conservative and only enable this for AMD btver2
where performance improves significantly - for example, 29%
on llvm/projects/test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c
(if we convert the data type to single-precision float).
This patch adds a two constant version of the Newton-Raphson
refinement algorithm to DAGCombiner that can be selected by any target
via a parameter returned by getRsqrtEstimate()..
See PR20900 for more details:
http://llvm.org/bugs/show_bug.cgi?id=20900
Differential Revision: http://reviews.llvm.org/D5658
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220570 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Most structs were fixed by r218451 but those of between >32-bits and
<64-bits remained broken since they were not marked with [ASZ]ExtUpper.
This patch fixes the remaining cases by using
CCPromoteToUpperBitsInType<i64> on i64's in addition to i32 and smaller.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5963
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220556 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a miscompilation in the AArch64 fast-isel which was
triggered when a branch is based on an icmp with condition eq or ne,
and type i1, i8 or i16. The cbz instruction compares the whole 32-bit
register, so values with the bottom 1, 8 or 16 bits clear would cause
the wrong branch to be taken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220553 91177308-0d34-0410-b5e6-96231b3b80d8
This is asm/diasm-only support, similar to AVX.
For ISeling the register variant, they are no different from 213 other than
whether the multiplication or the addition operand is destructed.
For ISeling the memory variant, i.e. to fold a load, they are no different
than the 132 variant. The addition operand (op3) in both cases can come from
memory. Again the ony difference is which operand is destructed.
There could be a post-RA pass that would convert a 213 or 132 into a 231.
Part of <rdar://problem/17082571>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220540 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for legalization of instructions of the form:
[fp_conv] <1 x i1> %op to <1 x double>
where fp_conv is one of fpto[us]i, [us]itofp. This used to assert
because they were simply missing from the vector operand scalarizer.
A similar problem arose in r190830, with trunc instead.
Fixes PR20778.
Differential Revision: http://reviews.llvm.org/D5810
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220533 91177308-0d34-0410-b5e6-96231b3b80d8
x86's CMPXCHG -> EFLAGS consumer wasn't being recorded as a real EFLAGS
dependency because it was represented by a pair of CopyFromReg(EFLAGS) ->
CopyToReg(EFLAGS) nodes. ScheduleDAG was expecting the source to be an
implicit-def on the instruction, where the result numbers in the DAG and the
Uses list in TableGen matched up precisely.
The Copy notation seems much more robust, so this patch extends ScheduleDAG
rather than refactoring x86.
Should fix PR20376.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220529 91177308-0d34-0410-b5e6-96231b3b80d8
While refactoring this code I was confused by both the name I had
introduced (addNonArgumentVariable... but it has all this logic to
handle argument numbering and keep things in order?) and by the
redundancy. Seems when I fixed the misordered inlined argument handling,
I didn't realize it was mostly redundant with the argument ordering code
(which I may've also written, I'm not sure). So let's just rely on the
more general case.
The only oddity in output this produces is that it means when we emit
all the variables for the current function, we don't track when we've
finished the argument variables and are about to start the local
variables and insert DW_AT_unspecified_parameters (for varargs
functions) there. Instead it ends up after the local variables, scopes,
etc. But this isn't invalid and doesn't cause DWARF consumers problems
that I know of... so we'll just go with that because it makes the code
nice & simple.
(though, let's see what the buildbots have to say about this - *crosses
fingers*)
There will be some cleanup commits to follow to remove the now trivial
wrappers, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220527 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, @llvm.smul.with.overflow.i8 expands to 9 instructions, where
3 are really needed.
This adds X86ISD::UMUL8/SMUL8 SD nodes, and custom lowers them to
MUL8/IMUL8 + SETO.
i8 is a special case because there is no two/three operand variants of
(I)MUL8, so the first operand and return value need to go in AL/AX.
Also, we can't write patterns for these instructions: TableGen refuses
patterns where output operands don't match SDNode results. In this case,
instructions where the output operand is an implicitly defined register.
A related special case (and FIXME) exists for MUL8 (X86InstrArith.td):
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)]
Ideally, these go away with UMUL8, but we still need to improve TableGen
support of implicit operands in patterns.
Before this change:
movsbl %sil, %eax
movsbl %dil, %ecx
imull %eax, %ecx
movb %cl, %al
sarb $7, %al
movzbl %al, %eax
movzbl %ch, %esi
cmpl %eax, %esi
setne %al
After:
movb %dil, %al
imulb %sil
seto %al
Also, remove a made-redundant testcase for PR19858, and enable more FastISel
ALU-overflow tests for SelectionDAG too.
Differential Revision: http://reviews.llvm.org/D5809
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220516 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes a chunk of special case logic for folding
(float)sqrt((double)x) -> sqrtf(x)
in InstCombineCasts and handles it in the mainstream path of SimplifyLibCalls.
No functional change intended, but I loosened the restriction on the existing
sqrt testcases to allow for this optimization even without unsafe-fp-math because
that's the existing behavior.
I also added a missing test case for not shrinking the llvm.sqrt.f64 intrinsic
in case the result is used as a double.
Differential Revision: http://reviews.llvm.org/D5919
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220514 91177308-0d34-0410-b5e6-96231b3b80d8
This prints disassembly comments for Objective-C references to CFStrings,
Selectors, Classes and method calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220500 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a bug (introduced by fixing the IR emitted from Clang where
the definition of a static member would be scoped within the class,
rather than within its lexical decl context) where the definition of a
static variable would be placed inside a class.
It also improves source fidelity by scoping static class member
definitions inside the lexical decl context in which tehy are written
(eg: namespace n { class foo { static int i; } int foo::i; } - the
definition of 'i' will be within the namespace 'n' in the DWARF output
now).
Lastly, and the original goal, this reduces debug info size slightly
(and makes debug info easier to read, etc) by placing the definitions of
non-member global variables within their namespace, rather than using a
separate namespace-scoped declaration along with a definition at global
scope.
Based on patches and discussion with Frédéric.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220497 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r214981.
I'm not sure what I was thinking when I wrote this. Testing with MSVC
shows that this function is mangled to '@f@8':
int __fastcall f(int a, int b);
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220492 91177308-0d34-0410-b5e6-96231b3b80d8
This updates check for double precision zero floating point constant to allow
use of instruction with immediate value rather than temporary register.
Currently "a == 0.0", where "a" is of "double" type generates:
vmov.i32 d16, #0x0
vcmpe.f64 d0, d16
With this change it becomes:
vcmpe.f64 d0, #0
Patch by Sergey Dmitrouk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220486 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, the ARM disassembler will disassemble the Thumb2 memory hint
instructions (PLD, PLDW and PLI), even for targets which do not have
these instructions. This patch adds the required checks to the
disassmebler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220472 91177308-0d34-0410-b5e6-96231b3b80d8
This tool lets us build LLVM components within the tree by setting up a
$GOPATH that resembles a tree fetched in the normal way with "go get".
It is intended that components such as the Go frontend will be built in-tree
using this tool.
Differential Revision: http://reviews.llvm.org/D5902
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220462 91177308-0d34-0410-b5e6-96231b3b80d8
After r220439 the behavior of labels in bundle-align mode changed,
and I neglected to update this test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220447 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Currently when emitting a label, a new data fragment is created for it if the
current fragment isn't a data fragment.
This change instead enqueues the label and attaches it to the next fragment
(e.g. created for the next instruction) if possible.
When bundle alignment is not enabled, this has no functionality change (it
just results in fewer extra fragments being created). For bundle alignment,
previously labels would point to the beginning of the bundle padding instead
of the beginning of the emitted instruction. This was not only less efficient
(e.g. jumping to the nops instead of past them) but also led to miscalculation
of the address of the GOT (since MC uses a label difference rather than
emitting a "." symbol).
Fixes https://code.google.com/p/nativeclient/issues/detail?id=3982
Test Plan: regression test attached
Reviewers: jvoung, eliben
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D5915
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220439 91177308-0d34-0410-b5e6-96231b3b80d8