ABIs like NaCl uses 32-bit addresses but have 64-bit frame.
The new register class reflects those constraints when choosing a
register class for a address access.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268796 91177308-0d34-0410-b5e6-96231b3b80d8
This register class may be used by any ABIs that uses x86_64 ISA while
using 32-bit addresses, not just in X32 cases. Make sure the name
reflects that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268795 91177308-0d34-0410-b5e6-96231b3b80d8
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268693 91177308-0d34-0410-b5e6-96231b3b80d8
Both Linux and kFreeBSD use glibc, so follow similiar code paths.
Add isTargetGlibc to check for this, and use it instead of isTargetLinux
in a few places.
Fixes PR22248 for kFreeBSD.
Differential Revision: http://reviews.llvm.org/D19104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268624 91177308-0d34-0410-b5e6-96231b3b80d8
The result type of setcc is dependent on whether or not AVX512 is
present.
We had an X86-specific DAG-combine which assumed that the result type
should be i8 when it could be i1.
This meant that we would generate illegal setccs which LowerSETCC did
not like.
Instead, use an appropriate type and zero extend to i8.
Also, there were some scenarios where the fold should have fired but
didn't because we were overly cautious about the types. This meant that
we generated:
shrl $31, %edi
andl $1, %edi
kmovw %edi, %k0
kxnorw %k0, %k0, %k1
kshiftrw $15, %k1, %k1
kxorw %k1, %k0, %k0
kmovw %k0, %eax
instead of:
testl %edi, %edi
setns %al
This fixes PR27638.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268609 91177308-0d34-0410-b5e6-96231b3b80d8
The new register classes allow to tell the machine verifier that it is
fine to use RIP for address accesses in x32 mode. Prior to that patch,
we would complain that we are using a GR64 in place of GR32, whereas it
is actually fine to use GR64 for x32 as long as the 32 high bits are 0s.
RIP has this property and is used for RIP-relative addressing.
This partially fixes http://llvm.org/PR27481.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268567 91177308-0d34-0410-b5e6-96231b3b80d8
i1 is now a legal type for X86 with AVX512.
There were some paths in X86FastISel which were not quite ready to see
an i1 value: they were not quite sure how to deal with sign/zero extends
for call arguments.
DTRT by extending to i8 for zeroext and bailing out of FastISel for
signext.
This fixes PR27591.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268470 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the AddPristinesAndCSRs parameters from
addLiveIns()/addLiveOuts().
We need to respect pristine registers after prologue epilogue insertion,
Seeing that we got this wrong in at least two commits already, we should
rather pay the small price to query MachineFrameInfo for it.
There are three cases that did not set AddPristineAndCSRs to true even
after register allocation:
- ExecutionDepsFix: live-out registers are used as a hint that the
register is used soon. This is not true for pristine registers so
use the new addLiveOutsNoPristines() to maintain this behaviour.
- SystemZShortenInst: Not setting AddPristineAndCSRs to true looks like
a bug, should do the right thing automatically now.
- StackMapLivenessAnalysis: Not adding pristine registers looks like a
bug to me. Added a FIXME comment but maintain the current behaviour
as a change may need to get coordinated with GC runtimes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268336 91177308-0d34-0410-b5e6-96231b3b80d8
This operation may branch to the handler block and we do not want it
to happen anywhere within the basic block.
Moreover, by marking it "terminator and branch" the machine verifier
does not wrongly assume (because of AnalyzeBranch not knowing better)
the branch is analyzable. Indeed, the target was seeing only the
unconditional branch and not the faulting load op and thought it was
a simple unconditional block.
The machine verifier was complaining because of that and moreover,
other optimizations could have done wrong transformation!
In the process, simplify the representation of the handler block in
the faulting load op. Now, we directly reference the handler block
instead of using a label. This has the benefits of:
1. MC knows how to issue a label for a BB, so leave that to it.
2. Accessing the target BB from its label is painful, whereas it is
direct from a MBB operand.
Note: The 2 bytes offset in implicit-null-check.ll comes from the
fact the unconditional jumps are not removed anymore, as the whole
terminator sequence is not analyzable anymore.
Will fix it in a subsequence commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268327 91177308-0d34-0410-b5e6-96231b3b80d8
This didn't cause a bug because the order of the patterns ensured that the 64-bit instructions with 32-bit immediates were selected first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268212 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Historically, we had a switch in the Makefiles for turning on "expensive
checks". This has never been ported to the cmake build, but the
(dead-ish) code is still around.
This will also make it easier to turn it on in buildbots.
Reviewers: chandlerc
Subscribers: jyknight, mzolotukhin, RKSimon, gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D19723
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268050 91177308-0d34-0410-b5e6-96231b3b80d8
The callseq_end node must be glued with the TLS calls, otherwise,
the generic code will miss the uses of the returned value and will
mark it dead.
Moreover, TLSCall 64-bit pseudo must not set an implicit-use on RDI,
the pseudo uses the symbol address at this point not RDI and the
lowering will do the right thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267797 91177308-0d34-0410-b5e6-96231b3b80d8