This commit adds tail call support to the MachineOutliner pass. This allows
the outliner to insert jumps rather than calls in areas where tail calling is
possible. Outlined tail calls include the return or terminator of the basic
block being outlined from.
Tail call support allows the outliner to take returns and terminators into
consideration while finding candidates to outline. It also allows the outliner
to save more instructions. For example, in the X86-64 outliner, a tail called
outlined function saves one instruction since no return has to be inserted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297653 91177308-0d34-0410-b5e6-96231b3b80d8
For AVX-512 we force the input to zero if the input is undef or the mask is all ones to break an execution dependency. This patch brings the same behavior to AVX2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297652 91177308-0d34-0410-b5e6-96231b3b80d8
We were already forcing undef inputs to become a zero vector, this now catches an all ones mask too.
Ideally we'd use undef and let execution dep fix handle picking the best register/clearance for the undef, but I don't think it can handle the early clobber today.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297651 91177308-0d34-0410-b5e6-96231b3b80d8
The typical use is a library vote function which
compares to 0. Fold the user condition into the intrinsic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297650 91177308-0d34-0410-b5e6-96231b3b80d8
Currently we don't enforce that ISD::ANY_EXTEND, ZERO_EXTEND, SIGN_EXTEND, TRUNC, FP_ROUND, FP_EXTEND have the same number of elements(including scalar) between their input and output. Though we have them documented as such. Up until a few months ago x86 created nodes that violated this rule. That's all been fixed now, and we should enforce the rule going forward.
In order to do this we need to allow SDTCisSameNumEltsAs to support scalar types and not enforce being a vector. If one type is scalar we will force the other type to also be scalar.
Differential Revision: https://reviews.llvm.org/D30878
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297648 91177308-0d34-0410-b5e6-96231b3b80d8
There were some issues in the implementation of enumerate()
preventing it from being used in various contexts. These were
all related to the fact that it did not supporter llvm's
iterator_facade_base class. So this patch adds support for that
and additionally exposes a new helper method to_vector() that
will evaluate an entire range and store the results in a
vector.
Differential Revision: https://reviews.llvm.org/D30853
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297633 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we could round-trip type records from PDB -> Yaml ->
PDB, but for symbols we could only go from PDB -> Yaml. This
completes the round-tripping for symbols as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297625 91177308-0d34-0410-b5e6-96231b3b80d8
If raw_fd_ostream is constructed with the path of "-", it claims
ownership of the stdout file descriptor. This means that it closes
stdout when it is destroyed. If there are multiple users of
raw_fd_ostream wrapped around stdout, then a crash can occur because
of operations on a closed stream.
An example of this would be running something like "clang -S -o - -MD
-MF - test.cpp". Alternatively, using outs() (which creates a local
version of raw_fd_stream to stdout) anywhere combined with such a
stream usage would cause the crash.
The fix duplicates the stdout file descriptor when used within
raw_fd_ostream, so that only that particular descriptor is closed when
the stream is destroyed.
Patch by James Henderson!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297624 91177308-0d34-0410-b5e6-96231b3b80d8
We used to hit an unreachable in getRegBankFromRegClass when dealing with the
stack pointer. This commit adds support for the GPRsp reg class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297621 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is a follow-up on r297580. It fixes the FIXME added temporarily
by that commit to keep the removal of Unroller's specialized version of
scalarizeInstruction() an NFC. See https://reviews.llvm.org/D30715 for details.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297610 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r297596.
There were other issues that were making this not work that have been fixed now. Reverting this results in a more accurate table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297602 91177308-0d34-0410-b5e6-96231b3b80d8
This exposed that we have several intrinsic instructions that have identical TSFlags to other instructions. We should merge their patterns and kill of the duplicate. I'll fix that in a follow up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297596 91177308-0d34-0410-b5e6-96231b3b80d8
The immediate should be 1 or 2, not 0 or 1. This was found while adding bounds checking to clang. In fact the existing clang builtin test failed if we ran it all the way to assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297591 91177308-0d34-0410-b5e6-96231b3b80d8
I noticed unnecessary 'sbb' instructions in D30472 and while looking at 'ptest' codegen recently.
This happens because we were transforming any 'setb' - even when we only wanted a single-bit result.
This patch moves those transforms under visitAdd/visitSub, so we we're only creating sbb/adc when it
is a win. I don't know why we need a SETCC_CARRY node type, but I'm not proposing to change that
existing behavior in this patch.
Also, I'm skeptical that sbb/adc are a win for all micro-arches, so I added comments to the test files
where this transform still fires.
The test changes here are all cases where we no longer produce sbb/adc. Avoiding partial register
stalls (generating an xor to clear a register) is not handled in some cases, but that's a separate
issue.
Differential Revision: https://reviews.llvm.org/D30611
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297586 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
A53 scheduler causes an assertion failure on all CRC instructions:
include/llvm/CodeGen/MachineInstr.h:280: const llvm::MachineOperand
&llvm::MachineInstr::getOperand(unsigned int) const: Assertion `i <
getNumOperands() && "getOperand() out of range!"' failed.
The case statements corresponding to CRC instructions are incorrect and should
be removed.
Also adding a testcase while on this.
Reviewers: t.p.northover, javed.absar, apazos, rengolin
Reviewed By: rengolin
Subscribers: evandro, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30274
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297582 91177308-0d34-0410-b5e6-96231b3b80d8
Unroller's specialized scalarizeInstruction() is mostly duplicating Vectorizer's
variant. OTOH Vectorizer's scalarizeInstruction() already supports the special
case of VF==1 except for avoiding mask-bit extraction in that case. This patch
removes Unroller's specialized version in favor of a unified method.
The only functional difference between the two variants seems to be setting
memcheck metadata for loads and stores only in Vectorizer's variant, which is a
bug in Unroller. To keep this patch an NFC the unified method doesn't set
memcheck metadata for VF==1.
Differential Revision: https://reviews.llvm.org/D30715
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297580 91177308-0d34-0410-b5e6-96231b3b80d8
I'm pretty sure there are more problems lurking here. But I think this fixes PR32241.
I've added the test case from that bug and added asserts that will fail if we ever try to copy between high registers and mask registers again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297574 91177308-0d34-0410-b5e6-96231b3b80d8
Without SSE41 (pextrb) we currently extract byte elements from a vector by spilling to stack and reloading the byte.
This patch is an initial attempt at using MOVD/PEXTRW to extract the relevant DWORD/WORD from the vector and then shift+truncate to collect the correct byte.
Extraction of multiple bytes this way would result in code bloat, but as explained in the patch we could probably afford to be more aggressive with the supported extractions before again falling back on spilling - possibly through counting the number of extracts and which DWORD/WORD they originate?
Differential Revision: https://reviews.llvm.org/D29841
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297568 91177308-0d34-0410-b5e6-96231b3b80d8