Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
Reviewers: aprantl
Differential Revision: http://reviews.llvm.org/D14276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257105 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In rL242338, debugger tuning was introduced, and the tuning for FreeBSD
was set to lldb by default. However, for the foreseeable future we
still need to default to gdb tuning, since lldb is not ready for all of
FreeBSD's architectures, and some system tools (like objcopy, etc) have
not yet been adapted to cope with the lldb tuned format, which has
.apple sections.
Therefore, let FreeBSD use gdb by default for now.
Reviewers: emaste, probinson
Subscribers: llvm-commits, emaste
Differential Revision: http://reviews.llvm.org/D15966
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257103 91177308-0d34-0410-b5e6-96231b3b80d8
We marked values which are 'undef' as constant instead of undefined
which violates SCCP's invariants. If we can figure out that a
computation results in 'undef', leave it in the undefined state.
This fixes PR16052.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257102 91177308-0d34-0410-b5e6-96231b3b80d8
Fix PR24852 (crash with -debug -instcombine)
Patch by Than McIntosh <thanm@google.com>
Summary:
Add guards to the asm writer to prevent crashing
when dumping an instruction that has no basic
block.
Differential Revision: http://reviews.llvm.org/D15798
From: Than McIntosh <thanm@google.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257094 91177308-0d34-0410-b5e6-96231b3b80d8
Coverage mapping data may reference names of functions
that are skipped by FE (e.g, unused inline functions). Since
those functions are skipped, normal instr-prof function lowering
pass won't put those names in the right section, so special
handling is needed to walk through coverage mapping structure
and recollect the references.
With this patch, only names that are skipped are processed. This
simplifies the lowering code and it no longer needs to make
assumptions coverage mapping data layout. It should also be
more efficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257091 91177308-0d34-0410-b5e6-96231b3b80d8
The fix for PR23999 made us mark loads of null as producing the constant
undef which upsets the lattice. Instead, keep the load as "undefined".
This fixes PR26044.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257087 91177308-0d34-0410-b5e6-96231b3b80d8
The MC assembler doesn't like using the empty string as a private label
prefix because then it treats all labels as private. This commit reverts
back to the default prefix, which is .L, which is common in ELF targets
and consistent with the LLVM name mangler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257083 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Multi-dword constant loads generated unnecessary moves from SGPRs into VGPRs,
increasing the code size and VGPR pressure. These moves are now folded away.
Note that this lack of operand folding was not a problem for VMEM loads,
because COPY nodes from VReg_Nnn to VGPR32 are eliminated by the register
coalescer.
Some tests are updated, note that the fsub.ll test explicitly checks that
the move is elided.
With the IR generated by current Mesa, the changes are obviously relatively
minor:
7063 shaders in 3531 tests
Totals:
SGPRS: 351872 -> 352560 (0.20 %)
VGPRS: 199984 -> 200732 (0.37 %)
Code Size: 9876968 -> 9881112 (0.04 %) bytes
LDS: 91 -> 91 (0.00 %) blocks
Scratch: 1779712 -> 1767424 (-0.69 %) bytes per wave
Wait states: 295164 -> 295337 (0.06 %)
Totals from affected shaders:
SGPRS: 65784 -> 66472 (1.05 %)
VGPRS: 38064 -> 38812 (1.97 %)
Code Size: 1993828 -> 1997972 (0.21 %) bytes
LDS: 42 -> 42 (0.00 %) blocks
Scratch: 795648 -> 783360 (-1.54 %) bytes per wave
Wait states: 54026 -> 54199 (0.32 %)
Reviewers: tstellarAMD, arsenm, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15875
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257074 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Somehow, I first interpreted the docs as saying space for xnack_mask is only
reserved when XNACK is enabled via SH_MEM_CONFIG. I felt uneasy about this and
went back to actually test what is happening, and it turns out that xnack_mask
is always reserved at least on Tonga and Carrizo, in the sense that flat_scr
is always fixed below the SGPRs that are used to implement xnack_mask, whether
or not they are actually used.
I confirmed this by writing a shader using inline assembly to tease out the
aliasing between flat_scratch and regular SGPRs. For example, on Tonga, where
we fix the number of SGPRs to 80, s[74:75] aliases flat_scratch (so
xnack_mask is s[76:77] and vcc is s[78:79]).
This patch changes both the calculation of the total number of SGPRs and the
various register reservations to account for this.
It ought to be possible to use the gap left by xnack_mask when the feature
isn't used, but this patch doesn't try to do that. (Note that the same applies
to vcc.)
Note that previously, even before my earlier change in r256794, the SGPRs that
alias to xnack_mask could end up being used as well when flat_scr was unused
and the total number of SGPRs happened to fall on the right alignment
(e.g. highest regular SGPR being used s29 and VCC used would lead to number
of SGPRs being 32, where s28 and s29 alias with xnack_mask). So if there
were some conflict due to such aliasing, we should have noticed that already.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15898
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257073 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the
base pointers were the same. However, in the case where we have
complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs,
conversions to or from integers, etc) the value of the original
base pointer will be hidden to the optimizer and this transformation
will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the
relevant uses of GEPs to GEPs with a common base pointer. The
GEP comparison will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257064 91177308-0d34-0410-b5e6-96231b3b80d8
See PR25822 for a more full summary, but we were conflating the concepts of "capture" and "escape". We were proving nocapture and using that proof to infer noescape, which is not true. Escaped-ness is a function-local property - as soon as a value is used in a call argument it escapes. Capturedness is a related but distinct property. It implies a *temporally limited* escape. Consider:
static int a;
int b;
int g(int * nocapture arg);
int f() {
a = 2; // Even though a escapes to g, it is not captured so can be treated as non-escaping here.
g(&a); // But here it must be treated as escaping.
g(&b); // Now that g(&a) has returned we know it was not captured so we can treat it as non-escaping again.
}
The original commit did not sufficiently understand this nuance and so caused PR25822 and PR26046.
r248576 included both a performance improvement (which has been backed out) and a related conformance fix (which has been kept along with its testcase).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257058 91177308-0d34-0410-b5e6-96231b3b80d8
AVX1 v8i32/v4i64 shuffles are bitcasted to v8f32/v4f64, this patch peeks through bitcasts to check for a load node to allow broadcasts to occur.
Follow up to D15310
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257055 91177308-0d34-0410-b5e6-96231b3b80d8
Change Triple::get32BitArchVariant to return arm/armeb as the 32bit
variant of aarch64/aarch64_be and do the same change for the oppoiste
direction in Triple::get64BitArchVariant.
Differential revision: http://reviews.llvm.org/D15529
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257048 91177308-0d34-0410-b5e6-96231b3b80d8
Follow up to D15378, added INSERTPS to the list of decodable target shuffles and enabled XFormVExtractWithShuffleIntoLoad to handle target shuffles with SentinelZero and tested this with INSERTPS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257046 91177308-0d34-0410-b5e6-96231b3b80d8
Darwin TLS accesses most closely resemble ELF's general-dynamic situation,
since they have to be able to handle all possible situations. The descriptors
and so on are obviously slightly different though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257039 91177308-0d34-0410-b5e6-96231b3b80d8
Serialize will perform a hardware serialization operation, and is
acting as a memory barrier. Therefore it must have the hasSideEffects
flag set so it will be treated as a global memory object.
Reviewed by Ulrich Weigand
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257036 91177308-0d34-0410-b5e6-96231b3b80d8
Unlike my comment in 257022 said, it turns out we do handle constant vectors in the statepoint lowering, but only because SelectionDAG doesn't actually produce constants for them. Add a couple of tests which show this working.
Also, add a triple to the same test file to hopefully fix a failing bot.
It turns out we do han
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257025 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, we try to split vectors of pointers back into their component pointer elements during rewrite-statepoints-for-gc. This is less than ideal since presumably the vectorizer chose to vectorize for a reason. :) It's also been a source of bugs - in particular, the relocation logic as currently implemented was recently discovered to be wrong.
The alternate approach is to allow gc.relocates of vector-of-pointer type and update the backend to handle them. That's what this patch tries to do. This won't actually enable vector-of-pointers in practice - there are some RS4GC changes needed - but the lowering is standalone and testable so it makes sense to separate.
Note that there are some known cases around vector constants which this patch does not handle. Once this is in, I'll send another patch with individual fixes and test cases.
Differential Revision: http://reviews.llvm.org/D15632
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257022 91177308-0d34-0410-b5e6-96231b3b80d8
Follow-up to r257000: DIImportedEntity can reach a DISubprogram via
its entity, but also via its scope. Handle the latter case as well.
PR26037.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257019 91177308-0d34-0410-b5e6-96231b3b80d8
At the moment, this is essentially a diangostic option so that I can start collecting failing test cases, but we will eventually migrate to removing the vector splitting code entirely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257015 91177308-0d34-0410-b5e6-96231b3b80d8
We need to know whether or not a given basic block is in a loop for the analysis
to be correct.
Loop information may be incomplete on irreducible CFGs, therefore we may
generate incorrect code if we use it in those situations.
This fixes PR25988.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257012 91177308-0d34-0410-b5e6-96231b3b80d8