Commit Graph

12376 Commits

Author SHA1 Message Date
Duncan P. N. Exon Smith
1d72e18caa IR: Add isUniqued() and isTemporary()
Change `MDNode::isDistinct()` to only apply to 'distinct' nodes (not
temporaries), and introduce `MDNode::isUniqued()` and
`MDNode::isTemporary()` for the other two possibilities.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226482 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-19 18:45:35 +00:00
Chandler Carruth
10b853882c [PM] Replace the Pass argument to SplitEdge with specific analyses used
and updated.

This may appear to remove handling for things like alias analysis when
splitting critical edges here, but in fact no callers of SplitEdge
relied on this. Similarly, all of them wanted to preserve LCSSA if there
was any update of the loop info. That makes the interface much simpler.

With this, all of BasicBlockUtils.h is free of Pass arguments and
prepared for the new pass manager. This is tho majority of utilities
that relied on pass arguments.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226459 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-19 12:36:53 +00:00
Chandler Carruth
adf74a6403 [PM] Cleanup a dead option to critical edge splitting that I noticed
while refactoring this API for the new pass manager.

No functionality changed here, the code didn't actually support this
option.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226457 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-19 12:12:00 +00:00
Chandler Carruth
08962f208b [PM] Remove the Pass argument from all of the critical edge splitting
APIs and replace it and numerous booleans with an option struct.

The critical edge splitting API has a really large surface of flags and
so it seems worth burning a small option struct / builder. This struct
can be constructed with the various preserved analyses and then flags
can be flipped in a builder style.

The various users are now responsible for directly passing along their
analysis information. This should be enough for the critical edge
splitting to work cleanly with the new pass manager as well.

This API is still pretty crufty and could be cleaned up a lot, but I've
focused on this change just threading an option struct rather than
a pass through the API.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226456 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-19 12:09:11 +00:00
Chandler Carruth
2274f74c92 [PM] Relax asserts and always try to reconstruct loop simplify form when
we can while splitting critical edges.

The only code which called this and didn't require simplified loops to
be preserved is polly, and the code behaves correctly there anyways.
Without this change, it becomes really hard to share this code with the
new pass manager where things like preserving loop simplify form don't
make any sense.

If anyone discovers this code behaving incorrectly, what it *should* be
testing for is whether the loops it needs to be in simplified form are
in fact in that form. It should always be trying to preserve that form
when it exists.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226443 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-19 10:23:00 +00:00
Erik Eckstein
04075c619b SLPVectorizer: limit the number of alias checks to reduce the runtime.
In case of blocks with many memory-accessing instructions, alias checking can take lot of time
(because calculating the memory dependencies has quadratic complexity).
I chose a limit which resulted in no changes when running the benchmarks.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226439 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-19 09:33:38 +00:00
Chandler Carruth
d09c0db8a9 [PM] Lift the analyses into the interface for
SplitLandingPadPredecessors and remove the Pass argument from its
interface.

Another step to the utilities being usable with both old and new pass
managers.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226426 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-19 03:03:39 +00:00
Chandler Carruth
5817eaff8f [PM] Pull the analyses used for another utility routine into its API
rather than relying on the pass object.

This one is a bit annoying, but will pay off. First, supporting this one
will make the next one much easier, and for utilities like LoopSimplify,
this is moving them (slowly) closer to not having to pass the pass
object around throughout their APIs.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226396 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-18 09:21:15 +00:00
Chandler Carruth
7478e27573 [PM] Sink the specific analyses preserved by SplitBlock into its
interface, removing Pass from its interface.

This also makes those analyses optional so that passes which don't even
preserve these (or use them) can skip the logic entirely.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226394 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-18 02:39:37 +00:00
Chandler Carruth
0389537c08 [PM] Replace another Pass argument with specific analyses that are
optionally updated by MergeBlockIntoPredecessors.

No functionality changed, just refactoring to clear the way for the new
pass manager.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226392 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-18 02:11:23 +00:00
Chandler Carruth
d39e52bef7 [PM] Refactor how the LoopRotation pass access the DominatorTree.
Instead of querying the pass every where we need to, do that once and
cache a pointer in the pass object. This is both simpler and I'm about
to add yet another place where we need to dig out that pointer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226391 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-18 02:08:05 +00:00
Chandler Carruth
b7f66977be [PM] Lift the actual analyses used into the inferface rather than
accepting a Pass and querying it for analyses.

This is necessary to allow the utilities to work both with the old and
new pass managers, and I also think this makes the interface much more
clear and helps the reader know what analyses the utility can actually
handle. I plan to repeat this process iteratively to clean up all the
pass utilities.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226386 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-18 01:45:07 +00:00
Chandler Carruth
5a2d01e5b8 [PM] Now that LoopInfo isn't in the Pass type hierarchy, it is much
cleaner to derive from the generic base.

Thise removes a ton of boiler plate code and somewhat strange and
pointless indirections. It also remove a bunch of the previously needed
friend declarations. To fully remove these, I also lifted the verify
logic into the generic LoopInfoBase, which seems good anyways -- it is
generic and useful logic even for the machine side.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226385 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-18 01:25:51 +00:00
Chandler Carruth
122e67cb34 [PM] Remove a dead field.
This was dead even before I refactored how we initialized it, but my
refactoring made it trivially dead and it is now caught by a Clang
warning. This fixes the warning and should clean up the -Werror bot
failures (sorry!).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226376 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-17 14:31:35 +00:00
Chandler Carruth
de5df29556 [PM] Split the LoopInfo object apart from the legacy pass, creating
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.

This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226373 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-17 14:16:18 +00:00
Mehdi Amini
525f296ef1 Fix Reassociate handling of constant in presence of undef float
http://reviews.llvm.org/D6993

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226245 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-16 03:00:58 +00:00
Sanjoy Das
148e8c9b8b Add a new pass "inductive range check elimination"
IRCE eliminates range checks of the form

  0 <= A * I + B < Length

by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment.  As an
example, IRCE will convert

  len = < known positive >
  for (i = 0; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }

to

  len = < known positive >
  limit = smin(n, len)
  // no first segment
  for (i = 0; i < limit; i++) {
    if (0 <= i && i < len) { // this check is fully redundant
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }
  for (i = limit; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }


IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).

Currently IRCE does not do any profitability analysis.  That is a
TODO.

Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline.  Having said that, I will love
to get feedback and general input from people interested in trying
this out.

This pass was originally r226201.  It was reverted because it used C++
features not supported by MSVC 2012.

Differential Revision: http://reviews.llvm.org/D6693



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226238 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-16 01:03:22 +00:00
Sanjoy Das
df1b4f601d Revert r226201 (Add a new pass "inductive range check elimination")
The change used C++11 features not supported by MSVC 2012.  I will fix
the change to use things supported MSVC 2012 and recommit shortly.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226216 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 22:18:10 +00:00
David Majnemer
63feac1e76 InductiveRangeCheckElimination: Remove extra ';'
This silences a GCC warning.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226215 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 21:55:16 +00:00
Sanjoy Das
0170a308ec Add a new pass "inductive range check elimination"
IRCE eliminates range checks of the form

  0 <= A * I + B < Length

by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment.  As an
example, IRCE will convert

  len = < known positive >
  for (i = 0; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }

to

  len = < known positive >
  limit = smin(n, len)
  // no first segment
  for (i = 0; i < limit; i++) {
    if (0 <= i && i < len) { // this check is fully redundant
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }
  for (i = limit; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }


IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).

Currently IRCE does not do any profitability analysis.  That is a
TODO.

Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline.  Having said that, I will love
to get feedback and general input from people interested in trying
this out.

Differential Revision: http://reviews.llvm.org/D6693



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226201 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 20:45:46 +00:00
Alexander Kornienko
b4c6267f7c Replace size method call of containers to empty method where appropriate
This patch was generated by a clang tidy checker that is being open sourced.
The documentation of that checker is the following:

/// The emptiness of a container should be checked using the empty method
/// instead of the size method. It is not guaranteed that size is a
/// constant-time function, and it is generally more efficient and also shows
/// clearer intent to use empty. Furthermore some containers may implement the
/// empty method but not implement the size method. Using empty whenever
/// possible makes it easier to switch to another container in the future.

Patch by Gábor Horváth!



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226161 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 11:41:30 +00:00
Chandler Carruth
eeeec3ce0d [PM] Separate the TargetLibraryInfo object from the immutable pass.
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.

Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226157 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 10:41:28 +00:00
David Majnemer
cdfb69b2a3 SimplifyIndVar: Remove unused variable
OtherOperandIdx is not used anymore, remove it to silence warnings.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226138 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 07:11:23 +00:00
NAKAMURA Takumi
20b033eae5 Update libdeps since TLI was moved from Target to Analysis in r226078.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226126 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 05:21:00 +00:00
Chandler Carruth
bda134910a [PM] Move TargetLibraryInfo into the Analysis library.
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.

This is in preparation for porting this analysis to the new pass
manager.

No functionality changed, and updates inbound for Clang and Polly.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226078 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 02:16:27 +00:00
Sanjoy Das
7ec1829823 Fix PR22222
The bug was introduced in r225282. r225282 assumed that sub X, Y is
the same as add X, -Y. This is not correct if we are going to upgrade
the sub to sub nuw. This change fixes the issue by making the
optimization ignore sub instructions.

Differential Revision: http://reviews.llvm.org/D6979



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226075 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 01:46:09 +00:00
David Majnemer
5e8cd99f55 InstCombine: Don't take A-B<0 into A<B if A-B has other uses
This fixes PR22226.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226023 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 19:26:56 +00:00
Erik Eckstein
d6238e7b7e reapply: SLPVectorizer: Cache results from memory alias checking.
This speeds up the dependency calculations for blocks with many load/store/call instructions.
Beside the improved runtime, there is no functional change.

Compared to the original commit, this re-applied commit contains a bug fix which ensures that there are
no incorrect collisions in the alias cache.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225977 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 11:24:47 +00:00
Hao Liu
e928b4046a Fix a wrong comment in LoopVectorize.
I.E. more than two -> exactly two
Fix a typo function name in LoopVectorize.
  I.E. collectStrideAcccess() -> collectStrideAccess()


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225935 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 03:02:16 +00:00
Duncan P. N. Exon Smith
a8f0d2f673 Remove trailing slash from r225924
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225929 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:42:43 +00:00
Duncan P. N. Exon Smith
4d430f0b77 Utils: Remove unreachable break, NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225924 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:31:34 +00:00
Duncan P. N. Exon Smith
68ee48f92e Utils: Handle remapping distinct MDLocations
Part of PR21433.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225921 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:29:32 +00:00
Duncan P. N. Exon Smith
ffa1a450c3 Utils: Thread distinct-ness through the cloneMD*() functions, NFC
The new logic isn't actually reachable yet, so no functionality change.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225918 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:24:38 +00:00
Duncan P. N. Exon Smith
df7a3b3789 Utils: Extract cloneMDNode(), NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225917 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:22:47 +00:00
Duncan P. N. Exon Smith
9b68f1ce3b Utils: Move cloneMD*() up, NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225915 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:21:24 +00:00
Duncan P. N. Exon Smith
74195b2df3 Utils: Add mapping for uniqued MDLocations
Still doesn't handle distinct ones.  Part of PR21433.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225914 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:20:27 +00:00
Duncan P. N. Exon Smith
6f73d6fd4c Utils: Extract cloneMDTuple(), NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225912 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:12:14 +00:00
Duncan P. N. Exon Smith
cc1ea9cb4d Utils: Extract shouldRemapUniquedNode(), NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225911 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:08:47 +00:00
Duncan P. N. Exon Smith
73f9065770 Utils: Simplify code, NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225906 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:07:03 +00:00
Duncan P. N. Exon Smith
5f1f94e4c5 Utils: Extract mapUniquedNode(), NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225905 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:06:21 +00:00
Duncan P. N. Exon Smith
fbf153aebb Utils: MDNode => UniquableMDNode, NFC
Although this makes the `cast<>` assert more often, the
`assert(Node->isResolved())` on the following line would assert in all
those cases.  So, no functionality change here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225903 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:05:17 +00:00
Duncan P. N. Exon Smith
c60bd0cf4b Utils: Separate out mapDistinctNode(), NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225902 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:03:05 +00:00
Duncan P. N. Exon Smith
874f37749b Utils: Use helper function directly, NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225901 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:02:17 +00:00
Duncan P. N. Exon Smith
f29d97eb0f Utils: Extract helper function, NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225897 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 01:01:19 +00:00
Duncan P. N. Exon Smith
cb5c0e6745 Utils: Use MDTuple::get() directly, NFC
Working towards supporting `MDLocation` in `MapMetadata()`.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225896 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 00:59:57 +00:00
Ahmed Bougacha
61d6dc41fa [SimplifyLibCalls] Don't try to simplify indirect calls.
It turns out, all callsites of the simplifier are guarded by a check for
CallInst::getCalledFunction (i.e., to make sure the callee is direct).

This check wasn't done when trying to further optimize a simplified fortified
libcall, introduced by a refactoring in r225640.

Fix that, add a testcase, and document the requirement.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225895 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-14 00:55:05 +00:00
Julien Lerouge
88e1d95d4d Fix non-determinism issue in SLP
The issue was introduced in r214638:

+  for (auto &BSIter : BlocksSchedules) {
+    scheduleBlock(BSIter.second.get());
+  }

Because BlocksSchedules is a DenseMap with BasicBlock* keys, blocks are
scheduled in non-deterministic order, resulting in unpredictable IR.

Patch by Daniel Reynaud!



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225821 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 19:45:52 +00:00
Erik Eckstein
046c3e807d Revert "SLPVectorizer: Cache results from memory alias checking."
The alias cache has a problem of incorrect collisions in case a new instruction is allocated at the same address as a previously deleted instruction.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225790 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 14:36:46 +00:00
Erik Eckstein
5b23df7cd8 SLPVectorizer: Cache results from memory alias checking.
This speeds up the dependency calculations for blocks with many load/store/call instructions.
Beside the improved runtime, there is no functional change.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 11:37:51 +00:00
Ramkumar Ramachandra
65535d3842 fix {typo, build failure} in r225760
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225762 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 04:17:47 +00:00
Ramkumar Ramachandra
2bcc808cf9 Standardize {pred,succ,use,user}_empty()
The functions {pred,succ,use,user}_{begin,end} exist, but many users
have to check *_begin() with *_end() by hand to determine if the
BasicBlock or User is empty. Fix this with a standard *_empty(),
demonstrating a few usecases.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225760 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 03:46:47 +00:00
Sanjay Patel
97c66ef490 fix typo; NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225753 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 01:51:52 +00:00
Sanjay Patel
1a135ced09 80-cols; NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225700 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 21:21:28 +00:00
Duncan P. N. Exon Smith
ae9e15f914 IR: Split GenericMDNode into MDTuple and UniquableMDNode
Split `GenericMDNode` into two classes (with more descriptive names).

  - `UniquableMDNode` will be a common subclass for `MDNode`s that are
    sometimes uniqued like constants, and sometimes 'distinct'.

    This class gets the (short-lived) RAUW support and related API.

  - `MDTuple` is the basic tuple that has always been returned by
    `MDNode::get()`.  This is as opposed to more specific nodes to be
    added soon, which have additional fields, custom assembly syntax,
    and extra semantics.

    This class gets the hash-related logic, since other sublcasses of
    `UniquableMDNode` may need to hash based on other fields.

To keep this diff from getting too big, I've added casts to `MDTuple`
that won't really scale as new subclasses of `UniquableMDNode` are
added, but I'll clean those up incrementally.

(No functionality change intended.)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225682 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 20:09:34 +00:00
Sanjay Patel
2211d38267 GVN: propagate equalities for floating point compares
Allow optimizations based on FP comparison values in the same way
as integers. 

This resolves PR17713:
http://llvm.org/bugs/show_bug.cgi?id=17713

Differential Revision: http://reviews.llvm.org/D6911



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225660 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 19:29:48 +00:00
Timur Iskhodzhanov
de4190697a [ASan] Move the shadow on Windows 32-bit from 0x20000000 to 0x40000000
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225641 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 17:38:58 +00:00
Ahmed Bougacha
2cec3e9c11 [SimplifyLibCalls] Factor out fortified libcall handling.
This lets us remove CGP duplicate.

Differential Revision: http://reviews.llvm.org/D6541


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225640 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 17:22:43 +00:00
Ahmed Bougacha
fe2d64e0f6 [SimplifyLibCalls] Factor out str/mem libcall optimizations.
Put them in a separate function, so we can reuse them to further
simplify fortified libcalls as well.

Differential Revision: http://reviews.llvm.org/D6540


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225639 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 17:20:06 +00:00
Ahmed Bougacha
aebee0ee62 [SimplifyLibCalls] Factor out signature checks for fortifiable libcalls.
The checks are the same for fortified counterparts to the libcalls, so
we might as well do them in a single place.

Differential Revision: http://reviews.llvm.org/D6539


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225638 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 17:18:19 +00:00
Hal Finkel
a14d6f1ea5 [LoopUnroll] Fix the partial unrolling threshold for small loop sizes
When we compute the size of a loop, we include the branch on the backedge and
the comparison feeding the conditional branch. Under normal circumstances,
these don't get replicated with the rest of the loop body when we unroll. This
led to the somewhat surprising behavior that really small loops would not get
unrolled enough -- they could be unrolled more and the resulting loop would be
below the threshold, because we were assuming they'd take
(LoopSize * UnrollingFactor) instructions after unrolling, instead of
(((LoopSize-2) * UnrollingFactor)+2) instructions. This fixes that computation.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225565 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-10 00:30:55 +00:00
Michael Zolotukhin
d23518097e Update comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225553 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 22:15:06 +00:00
Hans Wennborg
ca71be6415 SimplifyCFG: check uses of constant-foldable instrs in switch destinations (PR20210)
The previous code assumed that such instructions could not have any uses
outside CaseDest, with the motivation that the instruction could not
dominate CommonDest because CommonDest has phi nodes in it. That simply
isn't true; e.g., CommonDest could have an edge back to itself.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225552 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 22:13:31 +00:00
Michael Zolotukhin
b2e5f58de0 Remove duplicating code. NFC.
The removed condition is checked in the previous loop.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225542 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 20:36:19 +00:00
Tim Northover
8cd39a2630 Re-reapply r221924: "[GVN] Perform Scalar PRE on gep indices that feed loads before
doing Load PRE"

It's not really expected to stick around, last time it provoked a weird LTO
build failure that I can't reproduce now, and the bot logs are long gone. I'll
re-revert it if the failures recur.

Original description: Perform Scalar PRE on gep indices that feed loads before
doing Load PRE.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225536 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 19:19:56 +00:00
Suyog Sarda
df970d6297 Assumption that "VectorizedValue" will always be an Instruction is not correct.
It can be a constant or a vector argument.

ex :

define i32 @hadd(<4 x i32> %a) #0 {
entry:
  %vecext = extractelement <4 x i32> %a, i32 0
  %vecext1 = extractelement <4 x i32> %a, i32 1
  %add = add i32 %vecext, %vecext1
  %vecext2 = extractelement <4 x i32> %a, i32 2
  %add3 = add i32 %add, %vecext2
  %vecext4 = extractelement <4 x i32> %a, i32 3
  %add5 = add i32 %add3, %vecext4
  ret i32 %add5
}



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225517 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 10:23:48 +00:00
Philip Reames
dba2d12578 [Refactor] Have getNonLocalPointerDependency take the query instruction
Previously, MemoryDependenceAnalysis::getNonLocalPointerDependency was taking a list of properties about the instruction being queried. Since I'm about to need one more property to be passed down through the infrastructure - I need to know a query instruction is non-volatile in an inner helper - fix the interface once and for all.

I also added some assertions and behaviour clarifications around volatile and ordered field accesses. At the moment, this is mostly to document expected behaviour. The only non-standard instructions which can currently reach this are atomic, but unordered, loads and stores. Neither ordered or volatile accesses can reach here.

The call in GVN is protected by an isSimple check when it first considers the load. The calls in MemDepPrinter are protected by isUnordered checks. Both utilities also check isVolatile for loads and stores.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225481 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-09 00:04:22 +00:00
Duncan P. N. Exon Smith
3408708548 Utils: Keep distinct MDNodes distinct in MapMetadata()
Create new copies of distinct `MDNode`s instead of following the
uniquing `MDNode` logic.

Just like self-references (or other cycles), `MapMetadata()` creates a
new node.  In practice most calls use `RF_NoModuleLevelChanges`, in
which case nothing is duplicated anyway.

Part of PR22111.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225476 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-08 22:42:30 +00:00
Matt Arsenault
3b1f741856 Fix fcmp + fabs instcombines when using the intrinsic
This was only handling the libcall. This is another example
of why only the intrinsic should ever be used when it exists.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225465 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-08 20:09:34 +00:00
Adrian Prantl
7e44a65e6b Revert "Reapply: Teach SROA how to update debug info for fragmented variables."
This reverts commit r225379 while investigating an assertion failure reported
by Alexey.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225424 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-08 02:02:00 +00:00
Adrian Prantl
50bf54ccf4 Reapply: Teach SROA how to update debug info for fragmented variables.
The two buildbot failures were addressed in LLVM r225378 and CFE r225359.

This rapplies commit 225272 without modifications.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225379 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-07 20:52:22 +00:00
David Majnemer
72a9513e92 Analysis: Reformulate WillNotOverflowUnsignedAdd for reusability
WillNotOverflowUnsignedAdd's smarts will live in ValueTracking as
computeOverflowForUnsignedAdd.  It now returns a tri-state result:
never overflows, always overflows and sometimes overflows.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225329 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-07 00:39:50 +00:00
David Majnemer
c8c560867f InstCombine: Just a small tidy-up
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225328 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-07 00:39:42 +00:00
Adrian Prantl
d2c42b9617 Revert "Reapply: Teach SROA how to update debug info for fragmented variables."
because of a tsan buildbot failure.
This reverts commit 225272.

Fix should be coming soon.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225288 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 19:47:27 +00:00
Sanjoy Das
31123d4529 This patch teaches IndVarSimplify to add nuw and nsw to certain kinds
of operations that provably don't overflow. For example, we can prove
%civ.inc below does not sign-overflow. With this change,
IndVarSimplify changes %civ.inc to an add nsw.

  define i32 @foo(i32* %array, i32* %length_ptr, i32 %init) {
   entry:
    %length = load i32* %length_ptr, !range !0
    %len.sub.1 = sub i32 %length, 1
    %upper = icmp slt i32 %init, %len.sub.1
    br i1 %upper, label %loop, label %exit
  
   loop:
    %civ = phi i32 [ %init, %entry ], [ %civ.inc, %latch ]
    %civ.inc = add i32 %civ, 1
    %cmp = icmp slt i32 %civ.inc, %length
    br i1 %cmp, label %latch, label %break
  
   latch:
    store i32 0, i32* %array
    %check = icmp slt i32 %civ.inc, %len.sub.1
    br i1 %check, label %loop, label %break
  
   break:
    ret i32 %civ.inc
  
   exit:
    ret i32 42
  }

Differential Revision: http://reviews.llvm.org/D6748



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225282 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 19:02:56 +00:00
Adrian Prantl
46cb54c0fb Reapply: Teach SROA how to update debug info for fragmented variables.
This also rolls in the changes discussed in http://reviews.llvm.org/D6766.
Defers migrating the debug info for new allocas until after all partitions
are created.

Thanks to Chandler for reviewing!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225272 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 17:14:10 +00:00
Matt Arsenault
d883ca0ca7 Convert fcmp with 0.0 from casted integers to icmp
This is already handled in general when it is known the
conversion can't lose bits with smaller integer types
casted into wider floating point types.

This pattern happens somewhat often in GPU programs that cast
workitem intrinsics to float, which are often compared with 0.

Specifically handle the special case of compares with zero which
should also be known to not lose information. I had a more general
version of this which allows equality compares if the casted float is
exactly representable in the integer, but I'm not 100% confident that
is always correct.

Also fold cases that aren't integers to true / false.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225265 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 15:50:59 +00:00
David Majnemer
51e4a66417 InstCombine: Bitcast call arguments from/to pointer/integer type
Try harder to get rid of bitcast'd calls by ptrtoint/inttoptr'ing
arguments and return values when DataLayout says it is safe to do so.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225254 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-06 08:41:31 +00:00
Saleem Abdulrasool
e5f07551f0 SymbolRewriter: use iplist::splice
The swap implementation for iplist is currently unsupported.  Simply splice the
old list into place, which achieves the same purpose.  This is needed in order
to thread the -frewrite-map-file frontend option correctly.  NFC.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225186 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-05 17:56:32 +00:00
Saleem Abdulrasool
02d601d342 SymbolRewriter: 80-column
Wrap a couple of lines.  NFC.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225185 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-05 17:56:29 +00:00
Craig Topper
9bf73516cb Replace several 'assert(false' with 'llvm_unreachable' or fold a condition into the assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225160 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-05 10:15:49 +00:00
Jiangning Liu
614fe873ce Fixed a bug in memory dependence checking module of loop vectorization. The following loop should not be vectorized with current algorithm.
{code}
// loop body
   ... = a[i]          (1)
    ... = a[i+1]       (2)
 .......
a[i+1] = ....          (3)
   a[i] = ...          (4)
{code}

The algorithm tries to collect memory access candidates from AliasSetTracker, and then check memory dependences one another. The memory accesses are unique in AliasSetTracker, and a single memory access in AliasSetTracker may map to multiple entries in AccessAnalysis, which could cover both 'read' and 'write'. Originally the algorithm only checked 'write' entry in Accesses if only 'write' exists. This is incorrect and the consequence is it ignored all read access, and finally some RAW and WAR dependence are missed.

For the case given above, if we ignore two reads, the dependence between (1) and (3) would not be able to be captured, and finally this loop will be incorrectly vectorized.

The fix simply inserts a new loop to find all entries in Accesses. Since it will skip most of all other memory accesses by checking the Value pointer at the very beginning of the loop, it should not increase compile-time visibly.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225159 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-05 10:08:58 +00:00
Chandler Carruth
4f9a7277d1 [SROA] Apply a somewhat heavy and unpleasant hammer to fix PR22093, an
assert out of the new pre-splitting in SROA.

This fix makes the code do what was originally intended -- when we have
a store of a load both dealing in the same alloca, we force them to both
be pre-split with identical offsets. This is really quite hard to do
because we can keep discovering problems as we go along. We have to
track every load over the current alloca which for any resaon becomes
invalid for pre-splitting, and go back to remove all stores of those
loads. I've included a couple of test cases derived from PR22093 that
cover the different ways this can happen. While that PR only really
triggered the first of these two, its the same fundamental issue.

The other challenge here is documented in a FIXME now. We end up being
quite a bit more aggressive for pre-splitting when loads and stores
don't refer to the same alloca. This aggressiveness comes at the cost of
introducing potentially redundant loads. It isn't clear that this is the
right balance. It might be considerably better to require that we only
do pre-splitting when we can presplit every load and store involved in
the entire operation. That would give more consistent if conservative
results. Unfortunately, it requires a non-trivial change to the actual
pre-splitting operation in order to correctly handle cases where we end
up pre-splitting stores out-of-order. And it isn't 100% clear that this
is the right direction, although I'm starting to suspect that it is.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225149 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-05 04:17:53 +00:00
Chandler Carruth
5a9cd4d44e [PM] Split the AssumptionTracker immutable pass into two separate APIs:
a cache of assumptions for a single function, and an immutable pass that
manages those caches.

The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.

Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.

For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225131 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-04 12:03:27 +00:00
David Majnemer
07d7dbae9e InstCombine: match can find ConstantExprs, don't assume we have a Value
We assumed the output of a match was a Value, this would cause us to
assert because we would fail a cast<>.  Instead, use a helper in the
Operator family to hide the distinction between Value and Constant.

This fixes PR22087.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225127 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-04 07:36:02 +00:00
Kostya Serebryany
8c6ae1044a [asan] simplify the tracing code, make it use the same guard variables as coverage
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225103 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-03 00:54:43 +00:00
David Majnemer
5e9c6212a8 InstCombine: Detect when llvm.umul.with.overflow always overflows
We know overflow always occurs if both ~LHSKnownZero * ~RHSKnownZero
and LHSKnownOne * RHSKnownOne overflow.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225077 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-02 07:29:47 +00:00
David Majnemer
25e8e79fab Analysis: Reformulate WillNotOverflowUnsignedMul for reusability
WillNotOverflowUnsignedMul's smarts will live in ValueTracking as
computeOverflowForUnsignedMul.  It now returns a tri-state result:
never overflows, always overflows and sometimes overflows.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225076 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-02 07:29:43 +00:00
Chandler Carruth
ce7f347da2 [SROA] Teach SROA to be more aggressive in splitting now that we have
a pre-splitting pass over loads and stores.

Historically, splitting could cause enough problems that I hamstrung the
entire process with a requirement that splittable integer loads and
stores must cover the entire alloca. All smaller loads and stores were
unsplittable to prevent chaos from ensuing. With the new pre-splitting
logic that does load/store pair splitting I introduced in r225061, we
can now very nicely handle arbitrarily splittable loads and stores. In
order to fully benefit from these smarts, we need to mark all of the
integer loads and stores as splittable.

However, we don't actually want to rewrite partitions with all integer
loads and stores marked as splittable. This will fail to extract scalar
integers from aggregates, which is kind of the point of SROA. =] In
order to resolve this, what we really want to do is only do
pre-splitting on the alloca slices with integer loads and stores fully
splittable. This allows us to uncover all non-integer uses of the alloca
that would benefit from a split in an integer load or store (and where
introducing the split is safe because it is just memory transfer from
a load to a store). Once done, we make all the non-whole-alloca integer
loads and stores unsplittable just as they have historically been,
repartition and rewrite.

The result is that when there are integer loads and stores anywhere
within an alloca (such as from a memcpy of a sub-object of a larger
object), we can split them up if there are non-integer components to the
aggregate hiding beneath. I've added the challenging test cases to
demonstrate how this is able to promote to scalars even a case where we
have even *partially* overlapping loads and stores.

This restores the single-store behavior for small arrays of i8s which is
really nice. I've restored both the little endian testing and big endian
testing for these exactly as they were prior to r225061. It also forced
me to be more aggressive in an alignment test to actually defeat SROA.
=] Without the added volatiles there, we actually split up the weird i16
loads and produce nice double allocas with better alignment.

This also uncovered a number of bugs where we failed to handle
splittable load and store slices which didn't have a begininng offset of
zero. Those fixes are included, and without them the existing test cases
explode in glorious fireworks. =]

I've kept support for leaving whole-alloca integer loads and stores as
splittable even for the purpose of rewriting, but I think that's likely
no longer needed. With the new pre-splitting, we might be able to remove
all the splitting support for loads and stores from the rewriter. Not
doing that in this patch to try to isolate any performance regressions
that causes in an easy to find and revert chunk.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225074 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-02 03:55:54 +00:00
Chandler Carruth
888ee76367 [SROA] Make the computation of adjusted pointers not leak GEP
instructions.

I noticed this when working on dialing up how aggressively we can
pre-split loads and stores. My test case wasn't passing because dead
GEPs into the allocas persisted when they were built by this routine.
This isn't terribly harmful, we still rewrote and promoted the alloca
and I can't conceive of how to cause this to happen in a case where we
will keep the exact same alloca but rewrite and promote the uses of it.
If that ever happened, we'd get an assert out of mem2reg.

So I don't have a direct test case yet, but the subsequent commit's test
case wouldn't pass without this. There are other problems fixed by this
patch that I spotted purely by inspection such as the fact that
getAdjustedPtr could have actually deleted dead base pointers. I don't
know how to get a base pointer to go into getAdjustedPtr today, so
I think this bug could never have manifested (and I certainly can't
write a test case for it) but, it wasn't the intent of the code. The
code really just wanted to GC the new instructions built. That can be
done more directly by comparing with the base pointer which is the only
non-new instruction that this code can return.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225073 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-02 02:47:38 +00:00
Chandler Carruth
987c1f8ee7 [SROA] Fix the loop exit placement to be prior to indexing the splits
array. This prevents it from walking out of bounds on the splits array.

Bug found with the existing tests by ASan and by the MSVC debug build.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225069 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-02 00:10:22 +00:00
Chandler Carruth
ed3f2c6761 [SROA] Fix two total think-os in r225061 that should have been caught on
a +asserts bootstrap, but my bootstrap had asserts off. Oops.

Anyways, in some places it is reasonable to cast (as a sanity check) the
pointer operand to a load or store to an instruction within SROA --
namely when the pointer operand is expected to be derived from an
alloca, and thus always an instruction. However, the pre-splitting code
also deals with loads and stores to non-alloca pointers and there we
need to just use the Value*. Nothing about the code relied on the
instruction cast, it was only there essentially as an invariant
assertion. Remove the two that don't actually hold.

This should fix the proximate issue in PR22080, but I'm also doing an
asserts bootstrap myself to see if there are other issues lurking.

I'll craft a reduced test case in a moment, but I wanted to get the tree
healthy as quickly as possible.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225068 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-01 23:26:16 +00:00
Chandler Carruth
2f1e3d88b7 [SROA] Switch to using a more direct debug logging technique in one part
of my new load and store splitting, and fix a bug where it logged
a totally irrelevant slice rather than the actual slice in question.

The logging here previously worked because we used to place new slices
onto the back of the core sequence, but that caused other problems.
I updated the actual code to store new slices in their own vector but
didn't update the logging. There isn't a good way to reuse the logging
any more, and frankly it wasn't needed. We can directly log this bit
more easily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225063 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-01 12:56:47 +00:00
Chandler Carruth
8785c31033 [SROA] Fix formatting with clang-format which I managed to fail to do
prior to committing r225061. Sorry for that.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225062 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-01 12:01:03 +00:00
Chandler Carruth
450b39e971 [SROA] Teach SROA how to much more intelligently handle split loads and
stores.

When there are accesses to an entire alloca with an integer
load or store as well as accesses to small pieces of the alloca, SROA
splits up the large integer accesses. In order to do that, it uses bit
math to merge the small accesses into large integers. While this is
effective, it produces insane IR that can cause significant problems in
the rest of the optimizer:

- It can cause load and store mismatches with GVN on the non-alloca side
  where we end up loading an i64 (or some such) rather than loading
  specific elements that are stored.
- We can't always get rid of the integer bit math, which is why we can't
  always fix the loads and stores to work well with GVN.
- This is especially bad when we have operations that mix poorly with
  integer bit math such as floating point operations.
- It will block things like the vectorizer which might be able to handle
  the scalar stores that underly the aggregate.

At the same time, we can't just directly split up these loads and stores
in all cases. If there is actual integer arithmetic involved on the
values, then using integer bit math is actually the perfect lowering
because we can often combine it heavily with the surrounding math.

The solution this patch provides is to find places where SROA is
partitioning aggregates into small elements, and look for splittable
loads and stores that it can split all the way to some other adjacent
load and store. These are uniformly the cases where failing to split the
loads and stores hurts the optimizer that I have seen, and I've looked
extensively at the code produced both from more and less aggressive
approaches to this problem.

However, it is quite tricky to actually do this in SROA. We may have
loads and stores to the same alloca, or other complex patterns that are
hard to handle. This complexity leads to the somewhat subtle algorithm
implemented here. We have to do this entire process as a separate pass
over the partitioning of the alloca, and split up all of the loads prior
to splitting the stores so that we can handle safely the cases of
overlapping, including partially overlapping, loads and stores to the
same alloca. We also have to reconstitute the post-split slice
configuration so we can avoid iterating again over all the alloca uses
(the slow part of SROA). But we also have to ensure that when we split
up loads and stores to *other* allocas, we *do* re-iterate over them in
SROA to adapt to the more refined partitioning now required.

With this, I actually think we can fix a long-standing TODO in SROA
where I avoided splitting as many loads and stores as probably should be
splittable. This limitation historically mitigated the fallout of all
the bad things mentioned above. Now that we have more intelligent
handling, I plan to remove the FIXME and more aggressively mark integer
loads and stores as splittable. I'll do that in a follow-up patch to
help with bisecting any fallout.

The net result of this change should be more fine-grained and accurate
scalars being formed out of aggregates. At the very least, Clang now
generates perfect code for this high-level test case using
std::complex<float>:

  #include <complex>

  void g1(std::complex<float> &x, float a, float b) {
    x += std::complex<float>(a, b);
  }
  void g2(std::complex<float> &x, float a, float b) {
    x -= std::complex<float>(a, b);
  }

  void foo(const std::complex<float> &x, float a, float b,
           std::complex<float> &x1, std::complex<float> &x2) {
    std::complex<float> l1 = x;
    g1(l1, a, b);
    std::complex<float> l2 = x;
    g2(l2, a, b);
    x1 = l1;
    x2 = l2;
  }

This code isn't just hypothetical either. It was reduced out of the hot
inner loops of essentially every part of the Eigen math library when
using std::complex<float>. Those loops would consistently and
pervasively hop between the floating point unit and the integer unit due
to bit math extraction and insertion of floating point values that were
"stored" in a 64-bit integer register around the loop backedge.

So far, this change has passed a bootstrap and I have done some other
testing and so far, no issues. That doesn't mean there won't be though,
so I'll be prepared to help with any fallout. If you performance swings
in particular, please let me know. I'm very curious what all the impact
of this change will be. Stay tuned for the follow-up to also split more
integer loads and stores.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225061 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-01 11:54:38 +00:00
Sanjay Patel
28650b8ec2 InstCombine: fsub nsz 0, X ==> fsub nsz -0.0, X
Some day the backend may handle instruction-level fast math flags and make
this transform unnecessary, but it's still better practice to use the canonical
representation of fneg when possible (use a -0.0).

This is a partial fix for PR20870 ( http://llvm.org/bugs/show_bug.cgi?id=20870 ).
See also http://reviews.llvm.org/D6723.

Differential Revision: http://reviews.llvm.org/D6731



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225050 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-31 22:14:05 +00:00
David Majnemer
0f77ccd6bb InstCombine: try to transform A-B < 0 into A < B
We are allowed to move the 'B' to the right hand side if we an prove
there is no signed overflow and if the comparison itself is signed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225034 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-31 04:21:41 +00:00
Kostya Serebryany
dd890d5c5e [asan] change _sanitizer_cov_module_init to accept int* instead of int**
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224999 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-30 19:29:28 +00:00
Elena Demikhovsky
cc794daa67 Some code improvements in Masked Load/Store.
No functional changes.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224986 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-30 14:28:14 +00:00
Philip Reames
91a083c57f Carry facts about nullness and undef across GC relocation
This change implements four basic optimizations:

    If a relocated value isn't used, it doesn't need to be relocated.
    If the value being relocated is null, relocation doesn't change that. (Technically, this might be collector specific. I don't know of one which it doesn't work for though.)
    If the value being relocated is undef, the relocation is meaningless.
    If the value being relocated was known nonnull, the relocated pointer also isn't null. (Since it points to the same source language object.)

I outlined other planned work in comments.

Differential Revision: http://reviews.llvm.org/D6600



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224968 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-29 23:27:30 +00:00
Philip Reames
1714ad67bd Refine the notion of MayThrow in LICM to include a header specific version
In LICM, we have a check for an instruction which is guaranteed to execute and thus can't introduce any new faults if moved to the preheader. To handle a function which might unconditionally throw when first called, we check for any potentially throwing call in the loop and give up.

This is unfortunate when the potentially throwing condition is down a rare path. It prevents essentially all LICM of potentially faulting instructions where the faulting condition is checked outside the loop. It also greatly diminishes the utility of loop unswitching since control dependent instructions - which are now likely in the loops header block - will not be lifted by subsequent LICM runs.

define void @nothrow_header(i64 %x, i64 %y, i1 %cond) {
; CHECK-LABEL: nothrow_header
; CHECK-LABEL: entry
; CHECK: %div = udiv i64 %x, %y
; CHECK-LABEL: loop
; CHECK: call void @use(i64 %div)
entry:
  br label %loop
loop: ; preds = %entry, %for.inc
  %div = udiv i64 %x, %y
  br i1 %cond, label %loop-if, label %exit
loop-if:
  call void @use(i64 %div)
  br label %loop
exit:
  ret void
}

The current patch really only helps with non-memory instructions (i.e. divs, etc..) since the maythrow call down the rare path will be considered to alias an otherwise hoistable load.  The one exception is that it does kick in for loads which are known to be invariant without regard to other possible stores, i.e. those marked with either !invarant.load metadata of tbaa 'is constant memory' metadata.

Differential Revision: http://reviews.llvm.org/D6725



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224965 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-29 23:00:57 +00:00