Also add a check for llvm.used in the verifier and simplify clients now that
they can assume they have a ConstantArray.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180019 91177308-0d34-0410-b5e6-96231b3b80d8
-- C.4 and C.5 statements, when NSAA is not equal to SP.
-- C.1.cp statement for VA functions. Note: There are no VFP CPRCs in a
variadic procedure.
Before this patch "NSAA != 0" means "don't use GPRs anymore ". But there are
some exceptions in AAPCS.
1. For non VA function: allocate all VFP regs for CPRC. When all VFPs are allocated
CPRCs would be sent to stack, while non CPRCs may be still allocated in GRPs.
2. Check that for VA functions all params uses GPRs and then stack.
No exceptions, no CPRCs here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180011 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r179840 with a fix to test/DebugInfo/two-cus-from-same-file.ll
I'm not sure why that test only failed on ARM & MIPS and not X86 Linux, even
though the debug info was clearly invalid on all of them, but this ought to fix
it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179996 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than just splitting the input type and hoping for the best, apply
a bit more cleverness. Just splitting the types until the source is
legal often leads to an illegal result time, which is then widened and a
scalarization step is introduced which leads to truly horrible code
generation. With the loop vectorizer, these sorts of operations are much
more common, and so it's worth extra effort to do them well.
Add a legalization hook for the operands of a TRUNCATE node, which will
be encountered after the result type has been legalized, but if the
operand type is still illegal. If simple splitting of both types
ends up with the result type of each half still being legal, just
do that (v16i16 -> v16i8 on ARM, for example). If, however, that would
result in an illegal result type (v8i32 -> v8i8 on ARM, for example),
we can get more clever with power-two vectors. Specifically,
split the input type, but also widen the result element size, then
concatenate the halves and truncate again. For example on ARM,
To perform a "%res = v8i8 trunc v8i32 %in" we transform to:
%inlo = v4i32 extract_subvector %in, 0
%inhi = v4i32 extract_subvector %in, 4
%lo16 = v4i16 trunc v4i32 %inlo
%hi16 = v4i16 trunc v4i32 %inhi
%in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
%res = v8i8 trunc v8i16 %in16
This allows instruction selection to generate three VMOVN instructions
instead of a sequences of moves, stores and loads.
Update the ARMTargetTransformInfo to take this improved legalization
into account.
Consider the simplified IR:
define <16 x i8> @test1(<16 x i32>* %ap) {
%a = load <16 x i32>* %ap
%tmp = trunc <16 x i32> %a to <16 x i8>
ret <16 x i8> %tmp
}
define <8 x i8> @test2(<8 x i32>* %ap) {
%a = load <8 x i32>* %ap
%tmp = trunc <8 x i32> %a to <8 x i8>
ret <8 x i8> %tmp
}
Previously, we would generate the truly hideous:
.syntax unified
.section __TEXT,__text,regular,pure_instructions
.globl _test1
.align 2
_test1: @ @test1
@ BB#0:
push {r7}
mov r7, sp
sub sp, sp, #20
bic sp, sp, #7
add r1, r0, #48
add r2, r0, #32
vld1.64 {d24, d25}, [r0:128]
vld1.64 {d16, d17}, [r1:128]
vld1.64 {d18, d19}, [r2:128]
add r1, r0, #16
vmovn.i32 d22, q8
vld1.64 {d16, d17}, [r1:128]
vmovn.i32 d20, q9
vmovn.i32 d18, q12
vmov.u16 r0, d22[3]
strb r0, [sp, #15]
vmov.u16 r0, d22[2]
strb r0, [sp, #14]
vmov.u16 r0, d22[1]
strb r0, [sp, #13]
vmov.u16 r0, d22[0]
vmovn.i32 d16, q8
strb r0, [sp, #12]
vmov.u16 r0, d20[3]
strb r0, [sp, #11]
vmov.u16 r0, d20[2]
strb r0, [sp, #10]
vmov.u16 r0, d20[1]
strb r0, [sp, #9]
vmov.u16 r0, d20[0]
strb r0, [sp, #8]
vmov.u16 r0, d18[3]
strb r0, [sp, #3]
vmov.u16 r0, d18[2]
strb r0, [sp, #2]
vmov.u16 r0, d18[1]
strb r0, [sp, #1]
vmov.u16 r0, d18[0]
strb r0, [sp]
vmov.u16 r0, d16[3]
strb r0, [sp, #7]
vmov.u16 r0, d16[2]
strb r0, [sp, #6]
vmov.u16 r0, d16[1]
strb r0, [sp, #5]
vmov.u16 r0, d16[0]
strb r0, [sp, #4]
vldmia sp, {d16, d17}
vmov r0, r1, d16
vmov r2, r3, d17
mov sp, r7
pop {r7}
bx lr
.globl _test2
.align 2
_test2: @ @test2
@ BB#0:
push {r7}
mov r7, sp
sub sp, sp, #12
bic sp, sp, #7
vld1.64 {d16, d17}, [r0:128]
add r0, r0, #16
vld1.64 {d20, d21}, [r0:128]
vmovn.i32 d18, q8
vmov.u16 r0, d18[3]
vmovn.i32 d16, q10
strb r0, [sp, #3]
vmov.u16 r0, d18[2]
strb r0, [sp, #2]
vmov.u16 r0, d18[1]
strb r0, [sp, #1]
vmov.u16 r0, d18[0]
strb r0, [sp]
vmov.u16 r0, d16[3]
strb r0, [sp, #7]
vmov.u16 r0, d16[2]
strb r0, [sp, #6]
vmov.u16 r0, d16[1]
strb r0, [sp, #5]
vmov.u16 r0, d16[0]
strb r0, [sp, #4]
ldm sp, {r0, r1}
mov sp, r7
pop {r7}
bx lr
Now, however, we generate the much more straightforward:
.syntax unified
.section __TEXT,__text,regular,pure_instructions
.globl _test1
.align 2
_test1: @ @test1
@ BB#0:
add r1, r0, #48
add r2, r0, #32
vld1.64 {d20, d21}, [r0:128]
vld1.64 {d16, d17}, [r1:128]
add r1, r0, #16
vld1.64 {d18, d19}, [r2:128]
vld1.64 {d22, d23}, [r1:128]
vmovn.i32 d17, q8
vmovn.i32 d16, q9
vmovn.i32 d18, q10
vmovn.i32 d19, q11
vmovn.i16 d17, q8
vmovn.i16 d16, q9
vmov r0, r1, d16
vmov r2, r3, d17
bx lr
.globl _test2
.align 2
_test2: @ @test2
@ BB#0:
vld1.64 {d16, d17}, [r0:128]
add r0, r0, #16
vld1.64 {d18, d19}, [r0:128]
vmovn.i32 d16, q8
vmovn.i32 d17, q9
vmovn.i16 d16, q8
vmov r0, r1, d16
bx lr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179989 91177308-0d34-0410-b5e6-96231b3b80d8
This is an edge case that can happen if we modify a chain of multiple selects.
Update all operands in that case and remove the assert. PR15805.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179982 91177308-0d34-0410-b5e6-96231b3b80d8
There is the temptation to make this tranform dependent on target information as
it is not going to be beneficial on all (sub)targets. Therefore, we should
probably do this in MI Early-Ifconversion.
This reverts commit r179957. Original commit message:
"SimplifyCFG: If convert single conditional stores
This transformation will transform a conditional store with a preceeding
uncondtional store to the same location:
a[i] =
may-alias with a[i] load
if (cond)
a[i] = Y
into an unconditional store.
a[i] = X
may-alias with a[i] load
tmp = cond ? Y : X;
a[i] = tmp
We assume that on average the cost of a mispredicted branch is going to be
higher than the cost of a second store to the same location, and that the
secondary benefits of creating a bigger basic block for other optimizations to
work on outway the potential case were the branch would be correctly predicted
and the cost of the executing the second store would be noticably reflected in
performance.
hmmer's execution time improves by 30% on an imac12,2 on ref data sets. With
this change we are on par with gcc's performance (gcc also performs this
transformation). There was a 1.2 % performance improvement on a ARM swift chip.
Other tests in the test-suite+external seem to be mostly uninfluenced in my
experiments:
This optimization was triggered on 41 tests such that the executable was
different before/after the patch. Only 1 out of the 40 tests (dealII) was
reproducable below 100% (by about .4%). Given that hmmer benefits so much I
believe this to be a fair trade off.
I am going to watch performance numbers across the builtbots and will revert
this if anything unexpected comes up."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179980 91177308-0d34-0410-b5e6-96231b3b80d8
This will make it clearer when we are actually resetting a sequence's progress
vs just changing state. This is an important distinction because the former case
clears any pointers that we are tracking while the later does not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179963 91177308-0d34-0410-b5e6-96231b3b80d8
With a little help from the frontend, it looks like the standard va_*
intrinsics can do the job.
Also clean up an old bitcast hack in LowerVAARG that dealt with
unaligned double loads. Load SDNodes can specify an alignment now.
Still missing: Calling varargs functions with float arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179961 91177308-0d34-0410-b5e6-96231b3b80d8
This transformation will transform a conditional store with a preceeding
uncondtional store to the same location:
a[i] =
may-alias with a[i] load
if (cond)
a[i] = Y
into an unconditional store.
a[i] = X
may-alias with a[i] load
tmp = cond ? Y : X;
a[i] = tmp
We assume that on average the cost of a mispredicted branch is going to be
higher than the cost of a second store to the same location, and that the
secondary benefits of creating a bigger basic block for other optimizations to
work on outway the potential case were the branch would be correctly predicted
and the cost of the executing the second store would be noticably reflected in
performance.
hmmer's execution time improves by 30% on an imac12,2 on ref data sets. With
this change we are on par with gcc's performance (gcc also performs this
transformation). There was a 1.2 % performance improvement on a ARM swift chip.
Other tests in the test-suite+external seem to be mostly uninfluenced in my
experiments:
This optimization was triggered on 41 tests such that the executable was
different before/after the patch. Only 1 out of the 40 tests (dealII) was
reproducable below 100% (by about .4%). Given that hmmer benefits so much I
believe this to be a fair trade off.
I am going to watch performance numbers across the builtbots and will revert
this if anything unexpected comes up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179957 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, when spilling 64-bit paired registers, an LDMIA with both
a FrameIndex and an offset was produced. This kind of instruction
shouldn't exist, and the extra operand was being confused with the
predicate, causing aborts later on.
This removes the invalid 0-offset from the instruction being
produced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179956 91177308-0d34-0410-b5e6-96231b3b80d8
I think it's almost impossible to fold atomic fences profitably under
LLVM/C++11 semantics. As a result, this is now unused and just
cluttering up the target interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179940 91177308-0d34-0410-b5e6-96231b3b80d8
The getSwappedPredicate function can be used in other places (such as in
improvements to the PPCCTRLoops pass). Instead of trapping it as a static
function in PPCInstrInfo, move it into PPCPredicates with other
predicate-related things.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179926 91177308-0d34-0410-b5e6-96231b3b80d8