In X86FastISel::X86SelectStore(), improperly aligned stores are rejected and
handled by the DAG-based ISel. However, X86FastISel::X86SelectLoad() makes
no such requirement. There doesn't appear to be an x86 architectural
correctness issue with allowing potentially unaligned store instructions.
This patch removes this restriction.
Patch by Jim Stichnot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179774 91177308-0d34-0410-b5e6-96231b3b80d8
A min/max operation is represented by a select(cmp(lt/le/gt/ge, X, Y), X, Y)
sequence in LLVM. If we see such a sequence we can treat it just as any other
commutative binary instruction and reduce it.
This appears to help bzip2 by about 1.5% on an imac12,2.
radar://12960601
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179773 91177308-0d34-0410-b5e6-96231b3b80d8
This occurs due to an alloca representing a separate ownership from the
original pointer. Thus consider the following pseudo-IR:
objc_retain(%a)
for (...) {
objc_retain(%a)
%block <- %a
F(%block)
objc_release(%block)
}
objc_release(%a)
From the perspective of the optimizer, the %block is a separate
provenance from the original %a. Thus the optimizer pairs up the inner
retain for %a and the outer release from %a, resulting in segfaults.
This is fixed by noting that the signature of a mismatch of
retain/releases inside the for loop is a Use/CanRelease top down with an
None bottom up (since bottom up the Retain-CanRelease-Use-Release
sequence is completed by the inner objc_retain, but top down due to the
differing provenance from the objc_release said sequence is not
completed). In said case in CheckForCFGHazards, we now clear the state
of %a implying that no pairing will occur.
Additionally a test case is included.
rdar://12969722
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179747 91177308-0d34-0410-b5e6-96231b3b80d8
It's sometimes beneficial to emit a testcase with the old style attribute
syntax. Allow someone to do this.
<rdar://problem/13563209>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179735 91177308-0d34-0410-b5e6-96231b3b80d8
* We only ever specialize these templates with an instantiation of ELFType,
so we don't need a template template.
* Replace LLVM_ELF_COMMA with just passing the individual parameters to the
macro. This requires a second macro for when we only have ELFT, but that
is still a small win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179726 91177308-0d34-0410-b5e6-96231b3b80d8
unable to handle cases such as __asm mov eax, 8*-8.
This patch also attempts to simplify the state machine. Further, the error
reporting has been improved. Test cases included, but more will be added to
the clang side shortly.
rdar://13668445
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179719 91177308-0d34-0410-b5e6-96231b3b80d8
for the sdiv/srem/udiv/urem bitcode instructions. This is done for the i8,
i16, and i32 types, as well as i64 for the x86_64 target.
Patch by Jim Stichnoth
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179715 91177308-0d34-0410-b5e6-96231b3b80d8
PR15000 has a testcase where the time to compile was bordering on 30s. When I
dropped the limit value to 100, it became a much more managable 6s. The compile
time seems to increase in a roughly linear fashion based on increasing the limit
value. (See the runtimes below.)
So, let's lower the limit to 100 so that they can get a more reasonable compile
time.
Limit Value Time
----------- ----
10 0.9744s
20 1.8035s
30 2.3618s
40 2.9814s
50 3.6988s
60 4.5486s
70 4.9314s
80 5.8012s
90 6.4246s
100 7.0852s
110 7.6634s
120 8.3553s
130 9.0552s
140 9.6820s
150 9.8804s
160 10.8901s
170 10.9855s
180 12.0114s
190 12.6816s
200 13.2754s
210 13.9942s
220 13.8097s
230 14.3272s
240 15.7753s
250 15.6673s
260 16.0541s
270 16.7625s
280 17.3823s
290 18.8213s
300 18.6120s
310 20.0333s
320 19.5165s
330 20.2505s
340 20.7068s
350 21.1833s
360 22.9216s
370 22.2152s
380 23.9390s
390 23.4609s
400 24.0426s
410 24.6410s
420 26.5208s
430 27.7155s
440 26.4142s
450 28.5646s
460 27.3494s
470 29.7255s
480 29.4646s
490 30.5001s
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179713 91177308-0d34-0410-b5e6-96231b3b80d8
The reference manual defines only 5 permitted values for the immediate field of the "hint" instruction:
1. nop (imm == 0)
2. yield (imm == 1)
3. wfe (imm == 2)
4. wfi (imm == 3)
5. sev (imm == 4)
Therefore, restrict the permitted values for the "hint" instruction to 0 through 4.
Patch by Mihail Popa <Mihail.Popa@arm.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179707 91177308-0d34-0410-b5e6-96231b3b80d8
GCC complains: Core.cpp:1449:27: warning: overflow in implicit constant conversion [-Woverflow]
I'm not sure if that's really a problem here, but using the enum type is better
style anyways.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179696 91177308-0d34-0410-b5e6-96231b3b80d8
A couple of recently introduced conditional branch patterns
also need to be marked as isCodeGenOnly since they cannot
be handled by the asm parser.
No change in generated code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179690 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows the Mips assembler to parse and emit nested
expressions as instruction operands. It also extends the
expansion of memory instructions when an offset is given as
an expression.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179657 91177308-0d34-0410-b5e6-96231b3b80d8
If a switch instruction has a case for every possible value of its type,
with the same successor, SimplifyCFG would replace it with an icmp ult,
but the computation of the bound overflows in that case, which inverts
the test.
Patch by Jed Davis!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179587 91177308-0d34-0410-b5e6-96231b3b80d8
These are aliases for VACGT and VACGE, respectively, with the source
operands reversed.
rdar://13638090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179575 91177308-0d34-0410-b5e6-96231b3b80d8
Two return types are not equivalent if one is a pointer and the other is an
integral. This is because we cannot bitcast a pointer to an integral value.
PR15185
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179569 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows the assembler to recognize $fcc0
as a valid register for conditional move instructions.
Corresponding test cases have been added.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179567 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of emitting config values in a predefined order, the code
emitter will now emit a 32-bit register index followed by the 32-bit
config value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179546 91177308-0d34-0410-b5e6-96231b3b80d8
I will remove the isBigEndianHost function once I update clang.
The ifdef logic is designed to
* not use configure/cmake to avoid breaking -arch i686 -arch ppc.
* default to little endian
* be as small as possible
It looks like sys/endian.h is the preferred header on most modern BSD systems,
but it is better to change this in a followup patch as machine/endian.h is
available on FreeBSD, OpenBSD, NetBSD and OS X.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179527 91177308-0d34-0410-b5e6-96231b3b80d8
This is a rework of the broken parts in r179373 which were subsequently reverted in r179374 due to incompatibility with C++98 compilers. This version should be ok under C++98.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179520 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the CR spilling issues have been resolved, we can remove the
unmodeled-side-effect attributes from the comparison instructions (and also
mark them as isCompare). By allowing these, by default, to have unmodeled side
effects, we were hiding problems with CR spilling; but everything seems much
happier now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179502 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes an ABI bug for non-Darwin PPC64. For the callee-saved condition
registers, the spill location is specified relative to the stack pointer (SP +
8). However, this is not relative to the SP after the new stack frame is
established, but instead relative to the caller's stack pointer (it is stored
into the linkage area of the parent's stack frame).
So, like with the link register, we don't directly spill the CRs with other
callee-saved registers, but just mark them to be spilled during prologue
generation.
In practice, this reverts r179457 for PPC64 (but leaves it in place for PPC32).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179500 91177308-0d34-0410-b5e6-96231b3b80d8
One performs: (X == 13 | X == 14) -> X-13 <u 2
The other: (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
The problem is that there are certain values of C1 and C2 that
trigger both transforms but the first one blocks out the second,
this generates suboptimal code.
Reordering the transforms should be better in every case and
allows us to do interesting stuff like turn:
%shr = lshr i32 %X, 4
%and = and i32 %shr, 15
%add = add i32 %and, -14
%tobool = icmp ne i32 %add, 0
into:
%and = and i32 %X, 240
%tobool = icmp ne i32 %and, 224
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179493 91177308-0d34-0410-b5e6-96231b3b80d8
This is the default model for non-PIC 64-bit code. It supports
text+data+bss linked anywhere in the low 16 TB of the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179473 91177308-0d34-0410-b5e6-96231b3b80d8
64-bit code models need multiple relocations that can't be inferred from
the opcode like they can in 32-bit code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179472 91177308-0d34-0410-b5e6-96231b3b80d8
SDNodes and MachineOperands get target flags representing the %hi() and
%lo() assembly annotations that eventually become relocations.
Also define flags to be used by the 64-bit code models.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179468 91177308-0d34-0410-b5e6-96231b3b80d8
Leaving MFCR has having unmodeled side effects is not enough to prevent
unwanted instruction reordering post-RA. We could probably apply a stronger
barrier attribute, but there is a better way: Add all (not just the first) CR
to be spilled as live-in to the entry block, and add all CRs to the MFCR
instruction as implicitly killed.
Unfortunately, I don't have a small test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179465 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, only abs32 and pic32 are implemented. Add a test case for
abs32 with 64-bit code. 64-bit PIC code is currently broken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179463 91177308-0d34-0410-b5e6-96231b3b80d8
This is basically the same fix in three different places. We use a set to avoid
walking the whole tree of a big ConstantExprs multiple times.
For example: (select cmp, (add big_expr 1), (add big_expr 2))
We don't want to visit big_expr twice here, it may consist of thousands of
nodes.
The testcase exercises this by creating an insanely large ConstantExprs out of
a loop. It's questionable if the optimizer should ever create those, but this
can be triggered with real C code. Fixes PR15714.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179458 91177308-0d34-0410-b5e6-96231b3b80d8
For functions that need to spill CRs, and have dynamic stack allocations, the
value of the SP during the restore is not what it was during the save, and so
we need to use the FP in these cases (as for all of the other spills and
restores, but the CR restore has a special code path because its reserved slot,
like the link register, is specified directly relative to the adjusted SP).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179457 91177308-0d34-0410-b5e6-96231b3b80d8
The initial values were arbitrary. I want them to be more
conservative. This represents the number of latency cycles hidden by
OOO execution. In practice, I think it should be within a small factor
of the complex floating point operation latency so the scheduler can
make some attempt to hide latency even for smallish blocks.
These are by no means the best values, just a starting point for
tuning heuristics. Some benchmarks such as TSVC run faster with this
lower value for SandyBridge. I haven't run anything on Haswell, but
it's shouldn't be 2x SB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179450 91177308-0d34-0410-b5e6-96231b3b80d8
The register allocator expects minimal physreg live ranges. Schedule
physreg copies accordingly. This is slightly tricky when they occur in
the middle of the scheduling region. For now, this is handled by
rescheduling the copy when its associated instruction is
scheduled. Eventually we may instead bundle them, but only if we can
preserve the bundles as parallel copies during regalloc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179449 91177308-0d34-0410-b5e6-96231b3b80d8
I need to handle this for the test case in my following scheduler
commit.
Work is already under way to redesign the mechanism for node order
propagation because this case by case approach is unmaintainable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179448 91177308-0d34-0410-b5e6-96231b3b80d8
We are now able to handle big endian macho files in llvm-readobject. Thanks to
David Fang for providing the object files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179440 91177308-0d34-0410-b5e6-96231b3b80d8
is a follow on to r179393 and r179399. Test case to be added on
the clang side.
Part of rdar://13453209
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179403 91177308-0d34-0410-b5e6-96231b3b80d8
According to the ARM reference manual, constant offsets are mandatory for pre-indexed addressing modes.
The MC disassembler was not obeying this when the offset is 0.
It was producing instructions like: str r0, [r1]!.
Correct syntax is: str r0, [r1, #0]!.
This change modifies the dumping of operands so that the offset is always printed, regardless of its value, when pre-indexed addressing mode is used.
Patch by Mihail Popa <Mihail.Popa@arm.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179398 91177308-0d34-0410-b5e6-96231b3b80d8
immediate displacement. Specifically, add support for generating the proper IR.
We've been able to parse this for some time now. Test case to be added on the
clang side.
Part of rdar://13453209
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179393 91177308-0d34-0410-b5e6-96231b3b80d8
TableGen will not combine nested list 'let' bindings into a single list, and
instead uses only the inner scope. As a result, several instruction definitions
were missing implicit register defs that were in outer scopes. This de-nests
these scopes and makes all instructions have only one let binding which sets
implicit register definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179392 91177308-0d34-0410-b5e6-96231b3b80d8
This is prep. work for the implementation of optimizeCompare. Many PPC
instructions have 'record' forms (in almost all cases, this means that the RC
bit is set) that cause the result of the instruction to be compared with zero,
and the result of that comparison saved in a predefined condition register. In
order to add the record forms of the instructions without too much
copy-and-paste, the relevant functions have been refactored into multiclasses
which define both the record and normal forms.
Also, two TableGen-generated mapping functions have been added which allow
querying the instruction code for the record form given the normal form (and
vice versa).
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179356 91177308-0d34-0410-b5e6-96231b3b80d8
When debugging performance regressions we often ask ourselves if the regression
that we see is due to poor isel/sched/ra or due to some micro-architetural
problem. When comparing two code sequences one good way to rule out front-end
bottlenecks (and other the issues) is to force code alignment. This pass adds
a flag that forces the alignment of all of the basic blocks in the program.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179353 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Print more information about relocations.
With this patch llvm-readobj now prints if a relocation is pcrel, its length,
if it is extern and if it is scattered.
It also refactors the code a bit to use bit fields instead of shifts and
masks all over the place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179345 91177308-0d34-0410-b5e6-96231b3b80d8
variables that use namespace alias qualifiers. Test case coming on clang side
shortly.
Part of rdar://13499009
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179343 91177308-0d34-0410-b5e6-96231b3b80d8
Added PathAliases to check if two struct-path tags can alias.
Added command line option -struct-path-tbaa.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179337 91177308-0d34-0410-b5e6-96231b3b80d8
can build up the identifier string. No test case as support for looking up
these type of identifiers hasn't been implemented on the clang side.
Part of rdar://13499009
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179336 91177308-0d34-0410-b5e6-96231b3b80d8
specific logic. This makes the code much less fragile. Test case coming on the
clang side in a moment.
rdar://13634327
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179323 91177308-0d34-0410-b5e6-96231b3b80d8
A64Imms::isLogicalImmBits and A64Imms::isLogicalImm will attempt to
execute shifts that perform undefined behavior. Instead of attempting
to perform the 64-bit rotation, treat it as a no-op.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179317 91177308-0d34-0410-b5e6-96231b3b80d8
With this patch llvm-readobj now prints if a relocation is pcrel, its length,
if it is extern and if it is scattered.
It also refactors the code a bit to use bit fields instead of shifts and
masks all over the place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179294 91177308-0d34-0410-b5e6-96231b3b80d8
When trying to collapse sequences of insertelement/extractelement
instructions into single shuffle instructions, there is one specific
case where the Instruction Combiner wrongly updates the resulting
Mask of shuffle indexes.
The problem is in function CollectShuffleElments.
If we have a sequence of insert/extract element instructions
like the one below:
%tmp1 = extractelement <4 x float> %LHS, i32 0
%tmp2 = insertelement <4 x float> %RHS, float %tmp1, i32 1
%tmp3 = extractelement <4 x float> %RHS, i32 2
%tmp4 = insertelement <4 x float> %tmp2, float %tmp3, i32 3
Where:
. %RHS will have a mask of [4,5,6,7]
. %LHS will have a mask of [0,1,2,3]
The Mask of shuffle indexes is wrongly computed to [4,1,6,7]
instead of [4,0,6,7].
When analyzing %tmp2 in order to compute the Mask for the
resulting shuffle instruction, the algorithm forgets to update
the mask index at position 1 with the index associated to the
element extracted from %LHS by instruction %tmp1.
Patch by Andrea DiBiagio!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179291 91177308-0d34-0410-b5e6-96231b3b80d8
This will be used in clang to decide if it should create an @file or not. It
will be tested on the clang side.
Patch by Nathan Froyd.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179285 91177308-0d34-0410-b5e6-96231b3b80d8
As packed comparisons in AVX/SSE produce all 0s or all 1s in each SIMD lane,
vector select could be simplified to AND/OR or removed if one or both values
being selected is all 0s or all 1s.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179267 91177308-0d34-0410-b5e6-96231b3b80d8
As these two instructions in AVX extension are privileged instructions for
special purpose, it's only expected to be used in inlined assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179266 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is revised based on patch from Victor Umansky
<victor.umansky@intel.com>. More cases are handled in X86's bool
simplification, i.e.
- SETCC_CARRY
- value is truncated to i1 with AND
As a by-product, PR5443 is also fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179265 91177308-0d34-0410-b5e6-96231b3b80d8
It was returning the loaded address of the section containing the relocation,
which really doesn't seem to be the intent of this function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179255 91177308-0d34-0410-b5e6-96231b3b80d8
Because of how predication in implemented on PPC (only for branches), I think
that this is the right thing to do. No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179252 91177308-0d34-0410-b5e6-96231b3b80d8