The linker will call `lto_codegen_add_must_preserve_symbol' on all globals that
should be kept around. The linker will pretend that a dylib is being created.
<rdar://problem/12528059>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169770 91177308-0d34-0410-b5e6-96231b3b80d8
The `-mno-red-zone' flag wasn't being propagated to the functions that code
coverage generates. This allowed some of them to use the red zone when that
wasn't allowed.
<rdar://problem/12843084>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169754 91177308-0d34-0410-b5e6-96231b3b80d8
If the local checkout does not have 'git svn' references set up, don't try
to use 'git svn' for version information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169749 91177308-0d34-0410-b5e6-96231b3b80d8
the assembler. This is useful in order to know how the numbers add up,
since in particular the Align fragments account for a non-trivial
portion of the emitted fragments (especially on -O0 which sets
relax-all).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169747 91177308-0d34-0410-b5e6-96231b3b80d8
misched used GetUnderlyingObject in order to break false load/store
dependencies, and the -enable-aa-sched-mi feature similarly relied on
GetUnderlyingObject in order to ensure it is safe to use the aliasing analysis.
Unfortunately, GetUnderlyingObject does not recurse through phi nodes, and so
(especially due to LSR) all of these mechanisms failed for
induction-variable-dependent loads and stores inside loops.
This change replaces uses of GetUnderlyingObject with GetUnderlyingObjects
(which will recurse through phi and select instructions) in misched.
Andy reviewed, tested and simplified this patch; Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169744 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Not all chips targeted by x86_64 have this feature, but a dramatically
increasing number do. Specifying a chip-specific tuning parameter will
continue to turn the feature on or off as appropriate for that
particular chip, but the generic flag should try to achieve the best
performance on the most widely available hardware. Today, the number of
chips with fast UA access dwarfs those without in the x86-64 space.
Note that this also brings LLVM's code generation for this '-march' flag
more in line with that of modern GCCs.
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D195
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169740 91177308-0d34-0410-b5e6-96231b3b80d8
Intel chips.
The model number rules were determined by inspecting Intel's
documentation for their newer chip model numbers. My understanding is
that all of the newer Intel chips have fast unaligned memory access, but
if anyone is concerned about a particular chip, just shout.
No tests updated; it's not clear we have dedicated tests for the chips'
various features, but if anyone would like tests (or can point me at
some existing ones), I'm happy to oblige.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169730 91177308-0d34-0410-b5e6-96231b3b80d8
This visitor provides infrastructure for recursively traversing the
use-graph of a pointer-producing instruction like an alloca or a malloc.
It maintains a worklist of uses to visit, so it can handle very deep
recursions. It automatically looks through instructions which simply
translate one pointer to another (bitcasts and GEPs). It tracks the
offset relative to the original pointer as long as that offset remains
constant and exposes it during the visit as an APInt offset. Finally, it
performs conservative escape analysis.
However, currently it has some limitations that should be addressed
going forward:
1) It doesn't handle vectors of pointers.
2) It doesn't provide a cheaper visitor when the constant offset
tracking isn't needed.
3) It doesn't support non-instruction pointer values.
The current functionality is exactly what is required to implement the
SROA pointer-use visitors in terms of this one, rather than in terms of
their own ad-hoc base visitor, which was always very poorly specified.
SROA has been converted to use this, and the code there deleted which
this utility now provides.
Technically speaking, using this new visitor allows SROA to handle a few
more cases than it previously did. It is now more aggressive in ignoring
chains of instructions which look like they would defeat SROA, but in
fact do not because they never result in a read or write of memory.
While this is "neat", it shouldn't be interesting for real programs as
any such chains should have been removed by others passes long before we
get to SROA. As a consequence, I've not added any tests for these
features -- it shouldn't be part of SROA's contract to perform such
heroics.
The goal is to extend the functionality of this visitor going forward,
and re-use it from passes like ASan that can benefit from doing
a detailed walk of the uses of a pointer.
Thanks to Ben Kramer for the code review rounds and lots of help
reviewing and debugging this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169728 91177308-0d34-0410-b5e6-96231b3b80d8
When SROA was evaluating a mixture of i1 and i8 loads and stores, in
just a particular case, it would tickle a latent bug where we compared
bits to bytes rather than bits to bits. As a consequence of the latent
bug, we would allow integers through which were not byte-size multiples,
a situation the later rewriting code was never intended to handle.
In release builds this could trigger all manner of oddities, but the
reported issue in PR14548 was forming invalid bitcast instructions.
The only downside of this fix is that it makes it more clear that SROA
in its current form is not capable of handling mixed i1 and i8 loads and
stores. Sometimes with the previous code this would work by luck, but
usually it would crash, so I'm not terribly worried. I'll watch the LNT
numbers just to be sure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169719 91177308-0d34-0410-b5e6-96231b3b80d8
- added function to VectorTargetTransformInfo to query cost of intrinsics
- vectorize trivially vectorizable intrinsic calls such as sin, cos, log, etc.
Reviewed by: Nadav
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169711 91177308-0d34-0410-b5e6-96231b3b80d8
This will more closely match the behavior of the new PtrUseVisitor that
I am adding. Hopefully this will not change the actual behavior in any
way, but by making the processing order more similar help in debugging.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169697 91177308-0d34-0410-b5e6-96231b3b80d8
The limit seems to break newer pythons (see PR13598) so just drop it for now.
Eventually lit should learn to set limits for its children instead of a global
limit in the makefile.
If some PPC bots fail after this change: That's a good thing, they actually run
clang tests now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169695 91177308-0d34-0410-b5e6-96231b3b80d8
There are still bugs in this pass, as well as other issues that are
being worked on, but the bugs are crashers that occur pretty easily in
the wild. Test cases have been sent to the original commit's review
thread.
This reverts the commits:
r169671: Fix a logic error.
r169604: Move the popcnt tests to an X86 subdirectory.
r168931: Initial commit adding the pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169683 91177308-0d34-0410-b5e6-96231b3b80d8
This function sets the `_exportDynamic' ivar. When that's set, we export all
symbols (e.g. we don't run the internalize pass). This is equivalent to the
`--export-dynamic' linker flag in GNU land:
--export-dynamic
When creating a dynamically linked executable, add all symbols to the dynamic
symbol table. The dynamic symbol table is the set of symbols which are visible
from dynamic objects at run time. If you do not use this option, the dynamic
symbol table will normally contain only those symbols which are referenced by
some dynamic object mentioned in the link. If you use dlopen to load a dynamic
object which needs to refer back to the symbols defined by the program, rather
than some other dynamic object, then you will probably need to use this option
when linking the program itself.
The Darwin linker will support this via the `-export_dynamic' flag. We should
modify clang to support this via the `-rdynamic' flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169656 91177308-0d34-0410-b5e6-96231b3b80d8
It was a nasty oversight that we didn't include this when we added this
API in the first place. Blech.
rdar://12839439
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169653 91177308-0d34-0410-b5e6-96231b3b80d8
SmallString. This makes it possible to use the length-erased SmallVectorImpl
in the interface without imposing buffer size. Thus, the size of MCInstFragment
is back down since a preallocated 8-byte contents buffer is enough.
It would be generally a good idea to rid all the fragments of SmallString as
contents, because a vector just makes more sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169644 91177308-0d34-0410-b5e6-96231b3b80d8
the VSRI instruction before it since it does not affect the MSB.
Thanks Craig Topper for suggesting this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169638 91177308-0d34-0410-b5e6-96231b3b80d8