Previously, mergeTypeStreams returns only true or false, so it was
impossible to know the reason if it failed. This patch changes the
function signature so that it returns an Error object.
Differential Revision: https://reviews.llvm.org/D29362
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293820 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces the `analyze` subcommand. For now there is only
one option, to analyze hash collisions in the type streams. In
the future, however, we could add many more things here, such
as performing size analyses, compacting, and statistics about
the type of records etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293795 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves some helper functions related to interleaved access
vectorization out of LoopVectorize.cpp and into VectorUtils.cpp. We would like
to use these functions in a follow-on patch that improves interleaved load and
store lowering in (ARM/AArch64)ISelLowering.cpp. One of the functions was
already duplicated there and has been removed.
Differential Revision: https://reviews.llvm.org/D29398
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293788 91177308-0d34-0410-b5e6-96231b3b80d8
Add both cores to the target parser and TableGen. Test that eabi
attributes are set correctly for both cores. Additionally, test the
absence and presence of MOVT in Cortex-M23 and Cortex-M33, respectively.
Committed on behalf of Sanne Wouda.
Reviewers : rengolin, olista01.
Differential Revision: https://reviews.llvm.org/D29073
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293761 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves the class for scheduling adjacent instructions,
MacroFusion, to the target.
In AArch64, it also expands the fusion to all instructions pairs in a
scheduling block, beyond just among the predecessors of the branch at the
end.
Differential revision: https://reviews.llvm.org/D28489
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293737 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change implements the instrumentation map loading library which can
understand both YAML-defined instrumentation maps, and ELF 64-bit object
files that have the XRay instrumentation map section. We break it out
into a library on its own to allow for other applications to deal with
the XRay instrumentation map defined in XRay-instrumented binaries.
This type provides both raw access to the logical representation of the
instrumentation map entries as well as higher level functions for
converting a function ID into a function address.
At this point we only support ELF64 binaries and YAML-defined XRay
instrumentation maps. Future changes should extend this to support
32-bit ELF binaries, as well as other binary formats (like MachO).
As part of this change we also migrate all uses of the extraction logic
that used to be defined in tools/llvm-xray/ to use this new type and
interface for loading from files. We also remove the flag from the
`llvm-xray` tool that required users to specify the type of the
instrumentation map file being provided to instead make the library
auto-detect the file type.
Reviewers: dblaikie
Subscribers: mgorny, varno, llvm-commits
Differential Revision: https://reviews.llvm.org/D29319
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293721 91177308-0d34-0410-b5e6-96231b3b80d8
VectorUtils was moved to Analysis from Transforms/Utils, but some comments and
the include guard name still reflect its old location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293684 91177308-0d34-0410-b5e6-96231b3b80d8
Well, sort of. But the lower-level code that invoke used to be using completely
botched the handling of varargs functions, which hopefully won't be possible if
they're using the same code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293670 91177308-0d34-0410-b5e6-96231b3b80d8
@ABS8 can be applied to symbols which appear as immediate operands to
instructions that have a 8-bit immediate form for that operand. It causes
the assembler to use the 8-bit form and an 8-bit relocation (e.g. R_386_8
or R_X86_64_8) for the symbol.
Differential Revision: https://reviews.llvm.org/D28688
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293667 91177308-0d34-0410-b5e6-96231b3b80d8
The Requires class overrides the target requirements of an instruction,
rather than adding to them, so all ARM instructions need to include the
IsARM predicate when they have overwitten requirements.
This caused the swp and swpb instructions to be allowed in thumb mode
assembly, and the ARM encoding of CDP to be selected in codegen (which
is different for conditional instructions).
Differential Revision: https://reviews.llvm.org/D29283
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293634 91177308-0d34-0410-b5e6-96231b3b80d8
I think this is safe as long as no inputs are known to ever
be nans.
Also add an intrinsic for fmed3 to be able to handle all safe
math cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293598 91177308-0d34-0410-b5e6-96231b3b80d8
It appears to be dead, and it needlessly caused me to rebuild all of
LLVM when I changed CMAKE_INSTALL_PREFIX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293574 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we would hit UB (or the ISD::DELETED_NODE assert) if we
happened to replace a node during UpdateChains, because it would be
left in the list we were iterating over. This nulls out the pointer
when that happens so that we can avoid the issue.
Fixes llvm.org/PR31710
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293522 91177308-0d34-0410-b5e6-96231b3b80d8
To simplify/clarify memory ownership, make leaks (as one was found/fixed
recently) harder to write, etc.
(also, while I was there - removed a duplicate lookup in a container)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293506 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Fix the values of two xcore ELF flags.
The values in llvm grew from a pre-MC day when they would not show up
in .o files and are outside of the SHF_MASKPROC.
Fortunately the MC output is not currently used as xcore has its own
assemble and that assembler uses valid values. This updates llvm to
use the same values as the xmos assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293486 91177308-0d34-0410-b5e6-96231b3b80d8
Different architectures can have different meaning for flags in the
SHF_MASKPROC mask, so we should always check what the architecture use
before checking the flag.
NFC for now, but will allow fixing the value of an xmos flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293484 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r293480.
The patch is correct, but found bugs in other areas that need to be fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293481 91177308-0d34-0410-b5e6-96231b3b80d8
The values in llvm grew from a pre-MC day when they would not show up
in .o files and are outside of the SHF_MASKPROC.
Fortunately the MC output is not currently used as xcore has its own
assemble and that assembler uses valid values. This updates llvm to
use the same values as the xmos assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293480 91177308-0d34-0410-b5e6-96231b3b80d8
The primary use of the dump() functions in LLVM is for use in a
debugger. Unfortunately lldb does not seem to handle default arguments
so using `p SomeMI.dump()` fails and you have to type the longer `p
SomeMI.dump(nullptr)`. Remove the paramter to make the most common use
easy. (You can always construct something like `p
SomeMI.print(dbgs(),MyTII)` if you need more features).
Differential Revision: https://reviews.llvm.org/D29241
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293440 91177308-0d34-0410-b5e6-96231b3b80d8
Most flags were already initialized by the TargetOptions constructor but
we missed out on one. Also, simplify the constructor by using field
initializers when possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293406 91177308-0d34-0410-b5e6-96231b3b80d8
appendCallAsync, which all RPC call functions ultimately build on, will call
abandonAllPendingResponses on channel error. These extra calls are redundant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293405 91177308-0d34-0410-b5e6-96231b3b80d8
The jumbled scalar loads will be sorted while building the tree and these accesses will be marked to generate shufflevector after the vectorized load with proper mask.
Reviewers: hfinkel, mssimpso, mkuper
Differential Revision: https://reviews.llvm.org/D26905
Change-Id: I9c0c8e6f91a00076a7ee1465440a3f6ae092f7ad
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293386 91177308-0d34-0410-b5e6-96231b3b80d8
Support for barrier synchronization between a subset of threads
in a CTA through one of sixteen explicitly specified barriers.
These intrinsics are not directly exposed in CUDA but are
critical for forthcoming support of OpenMP on NVPTX GPUs.
The intrinsics allow the synchronization of an arbitrary
(multiple of 32) number of threads in a CTA at one of 16
distinct barriers. The two intrinsics added are as follows:
call void @llvm.nvvm.barrier.n(i32 10)
waits for all threads in a CTA to arrive at named barrier #10.
call void @llvm.nvvm.barrier(i32 15, i32 992)
waits for 992 threads in a CTA to arrive at barrier #15.
Detailed description of these intrinsics are available in the PTX manual.
http://docs.nvidia.com/cuda/parallel-thread-execution/#parallel-synchronization-and-communication-instructions
Reviewers: hfinkel, jlebar
Differential Revision: https://reviews.llvm.org/D17657
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293384 91177308-0d34-0410-b5e6-96231b3b80d8
When the OperandsMapper creates virtual registers, it used to just create
plain scalar register with the right size. This may confuse the
instruction selector because we lose the information of the instruction
using those registers what supposed to do. The MachineVerifier complains
about that already.
With this patch, the OperandsMapper still creates plain scalar register,
but the expectation is for the mapping function to remap the type
properly. The default mapping function has been updated to do that.
rdar://problem/30231850
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293362 91177308-0d34-0410-b5e6-96231b3b80d8
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293359 91177308-0d34-0410-b5e6-96231b3b80d8
insertUse, moveBefore and moveAfter operations.
Summary:
This creates a basic MemorySSA updater that handles arbitrary
insertion of uses and defs into MemorySSA, as well as arbitrary
movement around the CFG. It replaces the current splice API.
It can be made to handle arbitrary control flow changes.
Currently, it uses the same updater algorithm from D28934.
The main difference is because MemorySSA is single variable, we have
the complete def and use list, and don't need anyone to give it to us
as part of the API. We also have to rename stores below us in some
cases.
If we go that direction in that patch, i will merge all the updater
implementations (using an updater_traits or something to provide the
get* functions we use, called read*/write* in that patch).
Sadly, the current SSAUpdater algorithm is way too slow to use for
what we are doing here.
I have updated the tests we have to basically build memoryssa
incrementally using the updater api, and make sure it still comes out
the same.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29047
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293356 91177308-0d34-0410-b5e6-96231b3b80d8
In r292621, the recommit fixes a bug related with live interval update
after the partial redundent copy is moved.
This recommit solves an additional bug related to the lack of update of
subranges.
The original patch is to solve the performance problem described in
PR27827. Register coalescing sometimes cannot remove a copy because of
interference. But if we can find a reverse copy in one of the predecessor
block of the copy, the copy is partially redundent and we may remove the
copy partially by moving it to the predecessor block without the
reverse copy.
Differential Revision: https://reviews.llvm.org/D28585
Re-apply r292621
Revert "Revert rL292621. Caused some internal build bot failures in apple."
This reverts commit r292984.
Original patch: Wei Mi <wmi@google.com>
Subrange fix: Mostly Matthias Braun <matze@braunis.de>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293353 91177308-0d34-0410-b5e6-96231b3b80d8