Added support for extended mnemonics for the following branch instructions and
load/store-on-condition opcodes:
BR, LOCR, LOCGR, LOC, LOCG, STOC, STOCG
Phabricator: http://reviews.llvm.org/D19729
Committing on behalf of Zhan Liau
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269106 91177308-0d34-0410-b5e6-96231b3b80d8
Compiler-RT needs LLVM_LIBRARY_DIR, LLVM_BINARY_DIR.
Setting these in LLVMConfig.cmake will allow Compiler-RT to not need to run llvm-config as long as the LLVMConfig.cmake module is in the CMake module path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269104 91177308-0d34-0410-b5e6-96231b3b80d8
for the same subprogram.
This fixes a bug where DW_AT_abstract_origin is being emitted twice for
the same subprogram if a function is both inlined and emitted in the same
translation unit, by restoring the pre-r266446 behavior.
http://reviews.llvm.org/D20072
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269103 91177308-0d34-0410-b5e6-96231b3b80d8
I'm really not sure why we were in the first place, it's the linker's job to
convert between BL/BLX as necessary. Even worse, using BLX left Thumb calls
that could be locally resolved completely unencodable since all offsets to BLX
are multiples of 4.
rdar://26182344
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269101 91177308-0d34-0410-b5e6-96231b3b80d8
The LoopPassManager needs to calculate the loops analysis in order to
iterate over the loops at all. Requiring it is redundant and just adds
noise to the RUN lines here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269097 91177308-0d34-0410-b5e6-96231b3b80d8
An oddity of the .ll syntax is that the "@var = " in
@var = global i32 42
is optional. Writing just
global i32 42
is equivalent to
@0 = global i32 42
This means that there is a pretty big First set at the top level. The
current implementation maintains it manually. I was trying to refactor
it, but then started wondering why keep it a all. I personally find the
above syntax confusing. It looks like something is missing.
This patch removes the feature and simplifies the parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269096 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
While setting kill flags on instructions inside a BUNDLE, we bail out as soon
as we set kill flag on a register. But we are missing a check when all the
registers already have the correct kill flag set. We need to bail out in that
case as well.
This patch refactors the old code and simply makes use of the addRegisterKilled
function in MachineInstr.cpp in order to determine whether to set/remove kill
on an instruction.
Reviewers: apazos, t.p.northover, pete, MatzeB
Subscribers: MatzeB, davide, llvm-commits
Differential Revision: http://reviews.llvm.org/D17356
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269092 91177308-0d34-0410-b5e6-96231b3b80d8
The plan is to eventually make this logic simpler, however I expect it to
be a little tricky for the foreseeable future (at least until we're rid of
pointee types), so move it here so that it can be reused to build a summary
index for devirtualization.
Differential Revision: http://reviews.llvm.org/D20005
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269081 91177308-0d34-0410-b5e6-96231b3b80d8
An example from Hexagon where things went wrong:
%R0<def> = L2_loadrigp <ga:@fp04> ; load function address
J2_callr %R0<kill>, ..., %R0<imp-def> ; call *R0, return value in R0
ScheduleDAGInstrs::buildSchedGraph would visit all instructions going
backwards, and in each instruction it would visit all operands in their
order on the operand list. In the case of this call, it visited the use
of R0 first, then removed it from the set Uses after it visited the def.
This caused the DAG to be missing the data dependence edge on R0 between
the load and the call.
Differential Revision: http://reviews.llvm.org/D20102
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269076 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, SelectionDAG assumes 8/16-bit cmpxchg returns either a sign
extended result, or a zero extended result. SystemZ takes a third
option by returning junk in the high bits (rotated contents of the other
bytes in the memory word). In that case, don't use Assert*ext, and
zero-extend the result ourselves if a comparison is needed.
Differential Revision: http://reviews.llvm.org/D19800
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269075 91177308-0d34-0410-b5e6-96231b3b80d8
As discussed on D19198 - we need to check what happens when we shuffle with different value type to the load
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269068 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add support for emission of plaintext lists of the imported files for
each distributed backend compilation. Used for distributed build file
staging.
Invoked with new gold-plugin thinlto-emit-imports-files option, which is
only valid with thinlto-index-only (i.e. for distributed builds), or
from llvm-lto with new -thinlto-action=emitimports value.
Depends on D19556.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D19636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269067 91177308-0d34-0410-b5e6-96231b3b80d8
Seems like my sphynx version is different than the one in the bot, as it
accepted everything locally. I think this is the right fix...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269062 91177308-0d34-0410-b5e6-96231b3b80d8
This restores commit r268627:
Summary:
When launching ThinLTO backends in a distributed build (currently
supported in gold via the thinlto-index-only plugin option), emit
an individual index file for each backend process as described here:
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098272.html
...
Differential Revision: http://reviews.llvm.org/D19556
Address msan failures by avoiding std::prev on map.end(), the
theory is that this is causing issues due to some known UB problems
in __tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269059 91177308-0d34-0410-b5e6-96231b3b80d8
HowToCrossCompile was outdated and generating too much traffic on the mailing
list with similar queries. This change helps offset most of the problems that
were reported recently including:
* Removing the -ccc-gcc-name, adding --sysroot
* Making references to Debian's multiarch for target libraries
* Expanding -DCMAKE_CXX_FLAGS for both GCC and Clang
* Some formatting and clarifications in the text
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269054 91177308-0d34-0410-b5e6-96231b3b80d8
This removes a redundant stride versioning step (we already
do it in getPtrStride, so it has no effect) and uses PSE to
get the SCEV expressions for the source and destination
(this might have changed when getPtrStride was called).
I discovered this through code inspection, and couldn't
produce a regression test for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269052 91177308-0d34-0410-b5e6-96231b3b80d8
This was a fairly simple patch but on closer inspection was seriously flawed and caused PR27690.
This reverts commit r268921.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269051 91177308-0d34-0410-b5e6-96231b3b80d8
Following post-commit comments on r268900 from Rafael Espindola:
The missing relocations are now explicitly listed in the switch statement with
appropriate FIXME comments and the default path is now unreachable. The
temporary exception to this is that compound relocations for N64 still have a
default path that returns true. This is because fixing that case ought to be a
separate patch.
Also make R_MIPS_NONE return false since it has no effect on the section data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269047 91177308-0d34-0410-b5e6-96231b3b80d8
Loop rotation clones instruction from the old header into the preheader. If
there were uses of values produced by these instructions that were outside
the loop, we have to insert PHI nodes to merge the two values. If the values
are used by DbgIntrinsics they will be used as a MetadataAsValue of a
ValueAsMetadata of the original values, and iterating all of the uses of the
original value will not update the DbgIntrinsics. The new code checks if the
values are used by DbgIntrinsics and if so, updates them using essentially
the same logic as the original code.
The attached testcase demonstrates the issue. Without the fix, the
DbgIntrinic outside the loop uses values computed inside the loop, even
though these values do not dominate the DbgIntrinsic.
Author: Thomas Jablin (tjablin)
Reviewers: dblaikie aprantl kbarton hfinkel cycheng
http://reviews.llvm.org/D19564
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269034 91177308-0d34-0410-b5e6-96231b3b80d8
When a va_start or va_copy is immediately followed by a va_end (ignoring
debug information or other start/end in between), then it is safe to
remove the pair. As this code shares some commonalities with the lifetime
markers, this has been factored to helper functions.
This InstCombine pattern kicks-in 3 times when running the LLVM test
suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269033 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commits r268969, r268979 and r268984. They had target specific test
in generic directories without the correct specifiers and made it hard for us to
come up with a good solution by rapidly committing untested changes.
This test needs to be in a target specific directory or have the correct REQUIRED
identifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269027 91177308-0d34-0410-b5e6-96231b3b80d8
SystemZ (and probably other targets as well) can fold a memory operand
by changing the opcode into a new instruction that as a side-effect
also clobbers the CC-reg.
In order to do this, liveness of that reg must first be checked. When
LIS is passed, getRegUnit() can be called on it and the right
LiveRange is computed on demand.
Reviewed by Matthias Braun.
http://reviews.llvm.org/D19861
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269026 91177308-0d34-0410-b5e6-96231b3b80d8
Allow vectorization when the step is a loop-invariant variable.
This is the loop example that is getting vectorized after the patch:
int int_inc;
int bar(int init, int *restrict A, int N) {
int x = init;
for (int i=0;i<N;i++){
A[i] = x;
x += int_inc;
}
return x;
}
"x" is an induction variable with *loop-invariant* step.
But it is not a primary induction. Primary induction variable with non-constant step is not handled yet.
Differential Revision: http://reviews.llvm.org/D19258
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269023 91177308-0d34-0410-b5e6-96231b3b80d8
We now use LiveRangeCalc::extendToUses() instead of a specially designed
algorithm in constructMainRangeFromSubranges():
- The original motivation for constructMainRangeFromSubranges() were
differences between the main liverange and subranges because of hidden
dead definitions. This case however cannot happen anymore with the
DetectDeadLaneMasks pass in place.
- It simplifies the code.
- This fixes a longstanding bug where we did not properly create new SSA
values on merging control flow (the MachineVerifier missed most of
these cases).
- Move constructMainRangeFromSubranges() to LiveIntervalAnalysis and
LiveRangeCalc to better match the implementation/available helper
functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269016 91177308-0d34-0410-b5e6-96231b3b80d8
In -run-pass mode verify/print machine function immediately after
loading the .mir file if -verify-machineinstr/-print-machineinstrs
option is specified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269014 91177308-0d34-0410-b5e6-96231b3b80d8
Move the register stackification and coloring passes to run very late, after
PEI, tail duplication, and most other passes. This means that all code emitted
and expanded by those passes is now exposed to these passes. This also
eliminates the need for prologue/epilogue code to be manually stackified,
which significantly simplifies the code.
This does require running LiveIntervals a second time. It's useful to think
of these late passes not as late optimization passes, but as a domain-specific
compression algorithm based on knowledge of liveness information. It's used to
compress the code after all conventional optimizations are complete, which is
why it uses LiveIntervals at a phase when actual optimization passes don't
typically need it.
Differential Revision: http://reviews.llvm.org/D20075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269012 91177308-0d34-0410-b5e6-96231b3b80d8
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269011 91177308-0d34-0410-b5e6-96231b3b80d8