It's also possible to just write "= nullptr", but there's some question
of whether that's as readable, so I leave it up to authors to pick which
they prefer for now. If we want to discuss standardizing on one or the
other, we can do that at some point in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213438 91177308-0d34-0410-b5e6-96231b3b80d8
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206837 91177308-0d34-0410-b5e6-96231b3b80d8
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
Besides, this relates it more obviously to the VirtRegAuxInfo::calculateSpillWeightAndHint.
No functionnal change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194404 91177308-0d34-0410-b5e6-96231b3b80d8
Based on discussions with Lang Hames and Jakob Stoklund Olesen at the hacker's lab, and in the light of upcoming work on the PBQP register allocator, it was though that CalcSpillWeights does not need to be a pass. This change will enable to customize / tune the spill weight computation depending on the allocator.
Update the documentation style while there.
No functionnal change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194356 91177308-0d34-0410-b5e6-96231b3b80d8
Based on discussions with Lang Hames and Jakob Stoklund Olesen at the hacker's lab, and in the light of upcoming work on the PBQP register allocator, it was though that CalcSpillWeights does not need to be a pass. This change will enable to customize / tune the spill weight computation depending on the allocator.
Update the documentation style while there.
No functionnal change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194269 91177308-0d34-0410-b5e6-96231b3b80d8
Track new virtual registers by register number, rather than by the live
interval created for them. This is the first step in separating the
creation of new virtual registers and new live intervals. Eventually
live intervals will be created and populated on demand after the virtual
registers have been created and used in instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188434 91177308-0d34-0410-b5e6-96231b3b80d8
The main advantages here are way better heuristics, taking into account not
just loop depth but also __builtin_expect and other static heuristics and will
eventually learn how to use profile info. Most of the work in this patch is
pushing the MachineBlockFrequencyInfo analysis into the right places.
This is good for a 5% speedup on zlib's deflate (x86_64), there were some very
unfortunate spilling decisions in its hottest loop in longest_match(). Other
benchmarks I tried were mostly neutral.
This changes register allocation in subtle ways, update the tests for it.
2012-02-20-MachineCPBug.ll was deleted as it's very fragile and the instruction
it looked for was gone already (but the FileCheck pattern picked up unrelated
stuff).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184105 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change, just moved header files.
Targets can inject custom passes between register allocation and
rewriting. This makes it possible to tweak the register allocation
before rewriting, using the full global interference checking available
from LiveRegMatrix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168806 91177308-0d34-0410-b5e6-96231b3b80d8
Based on CR feedback from r162301 and Craig Topper's refactoring in r162347
here are a few other places that could use the same API (& in one instance drop
a Function.h dependency).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162367 91177308-0d34-0410-b5e6-96231b3b80d8
I don't think anyone has been using this functionality for a while, and
it is getting in the way of refactoring now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158876 91177308-0d34-0410-b5e6-96231b3b80d8
This deduplicates some code from the optimizing register allocators, and
it means that it is now possible to change the register allocators'
solutions simply by editing the VirtRegMap between the register
allocator pass and the rewriter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158249 91177308-0d34-0410-b5e6-96231b3b80d8
OK, not really. We don't want to reintroduce the old rewriter hacks.
This patch extracts virtual register rewriting as a separate pass that
runs after the register allocator. This is possible now that
CodeGen/Passes.cpp can configure the full optimizing register allocator
pipeline.
The rewriter pass uses register assignments in VirtRegMap to rewrite
virtual registers to physical registers, and it inserts kill flags based
on live intervals.
These finalization steps are the same for the optimizing register
allocators: RABasic, RAGreedy, and PBQP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158244 91177308-0d34-0410-b5e6-96231b3b80d8
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158090 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change intended.
Sorry for the churn. The iterator classes are supposed to help avoid
giant commits like this one in the future. The TableGen-produced
register lists are getting quite large, and it may be necessary to
change the table representation.
This makes it possible to do so without changing all clients (again).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157854 91177308-0d34-0410-b5e6-96231b3b80d8
methods are no longer needed now that LinearScan has gone away.
(Contains tweaks trivialSpillEverywhere to enable the removal of getNewVRegs).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151658 91177308-0d34-0410-b5e6-96231b3b80d8
Passes after RegAlloc should be able to rely on MRI->getNumVirtRegs() == 0.
This makes sharing code for pre/postRA passes more robust.
Now, to check if a pass is running before the RA pipeline begins, use MRI->isSSA().
To check if a pass is running after the RA pipeline ends, use !MRI->getNumVirtRegs().
PEI resets virtual regs when it's done scavenging.
PTX will either have to provide its own PEI pass or assign physregs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151032 91177308-0d34-0410-b5e6-96231b3b80d8
Creates a configurable regalloc pipeline.
Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa.
When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>.
CodeGen transformation passes are never "required" as an analysis
ProcessImplicitDefs does not require LiveVariables.
We have a plan to massively simplify some of the early passes within the regalloc superpass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150226 91177308-0d34-0410-b5e6-96231b3b80d8
The register allocators don't currently support adding reserved
registers while they are running. Extend the MRI API to keep track of
the set of reserved registers when register allocation started.
Target hooks like hasFP() and needsStackRealignment() can look at this
set to avoid reserving more registers during register allocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147577 91177308-0d34-0410-b5e6-96231b3b80d8
of reserved registers.
Use RegisterClassInfo in RABasic as well. This slightly changes som
allocation orders because RegisterClassInfo puts CSR aliases last.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132581 91177308-0d34-0410-b5e6-96231b3b80d8
The previous invalidation missed the alias interference caches.
Also add a stats counter for the number of repaired ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131133 91177308-0d34-0410-b5e6-96231b3b80d8