llvm/lib/MC/MCAsmStreamer.cpp
Evan Cheng 0e6a052331 Sink getDwarfRegNum, getLLVMRegNum, getSEHRegNum from TargetRegisterInfo down
to MCRegisterInfo. Also initialize the mapping at construction time.

This patch eliminate TargetRegisterInfo from TargetAsmInfo. It's another step
towards fixing the layering violation.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135424 91177308-0d34-0410-b5e6-96231b3b80d8
2011-07-18 20:57:22 +00:00

1258 lines
38 KiB
C++

//===- lib/MC/MCAsmStreamer.cpp - Text Assembly Output --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetAsmBackend.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include <cctype>
using namespace llvm;
namespace {
class MCAsmStreamer : public MCStreamer {
protected:
formatted_raw_ostream &OS;
const MCAsmInfo &MAI;
private:
OwningPtr<MCInstPrinter> InstPrinter;
OwningPtr<MCCodeEmitter> Emitter;
OwningPtr<TargetAsmBackend> AsmBackend;
SmallString<128> CommentToEmit;
raw_svector_ostream CommentStream;
unsigned IsVerboseAsm : 1;
unsigned ShowInst : 1;
unsigned UseLoc : 1;
unsigned UseCFI : 1;
enum EHSymbolFlags { EHGlobal = 1,
EHWeakDefinition = 1 << 1,
EHPrivateExtern = 1 << 2 };
DenseMap<const MCSymbol*, unsigned> FlagMap;
bool needsSet(const MCExpr *Value);
void EmitRegisterName(int64_t Register);
public:
MCAsmStreamer(MCContext &Context, formatted_raw_ostream &os,
bool isVerboseAsm, bool useLoc, bool useCFI,
MCInstPrinter *printer, MCCodeEmitter *emitter,
TargetAsmBackend *asmbackend,
bool showInst)
: MCStreamer(Context), OS(os), MAI(Context.getAsmInfo()),
InstPrinter(printer), Emitter(emitter), AsmBackend(asmbackend),
CommentStream(CommentToEmit), IsVerboseAsm(isVerboseAsm),
ShowInst(showInst), UseLoc(useLoc), UseCFI(useCFI) {
if (InstPrinter && IsVerboseAsm)
InstPrinter->setCommentStream(CommentStream);
}
~MCAsmStreamer() {}
inline void EmitEOL() {
// If we don't have any comments, just emit a \n.
if (!IsVerboseAsm) {
OS << '\n';
return;
}
EmitCommentsAndEOL();
}
void EmitCommentsAndEOL();
/// isVerboseAsm - Return true if this streamer supports verbose assembly at
/// all.
virtual bool isVerboseAsm() const { return IsVerboseAsm; }
/// hasRawTextSupport - We support EmitRawText.
virtual bool hasRawTextSupport() const { return true; }
/// AddComment - Add a comment that can be emitted to the generated .s
/// file if applicable as a QoI issue to make the output of the compiler
/// more readable. This only affects the MCAsmStreamer, and only when
/// verbose assembly output is enabled.
virtual void AddComment(const Twine &T);
/// AddEncodingComment - Add a comment showing the encoding of an instruction.
virtual void AddEncodingComment(const MCInst &Inst);
/// GetCommentOS - Return a raw_ostream that comments can be written to.
/// Unlike AddComment, you are required to terminate comments with \n if you
/// use this method.
virtual raw_ostream &GetCommentOS() {
if (!IsVerboseAsm)
return nulls(); // Discard comments unless in verbose asm mode.
return CommentStream;
}
/// AddBlankLine - Emit a blank line to a .s file to pretty it up.
virtual void AddBlankLine() {
EmitEOL();
}
/// @name MCStreamer Interface
/// @{
virtual void ChangeSection(const MCSection *Section);
virtual void InitSections() {
// FIXME, this is MachO specific, but the testsuite
// expects this.
SwitchSection(getContext().getMachOSection("__TEXT", "__text",
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
0, SectionKind::getText()));
}
virtual void EmitLabel(MCSymbol *Symbol);
virtual void EmitEHSymAttributes(const MCSymbol *Symbol,
MCSymbol *EHSymbol);
virtual void EmitAssemblerFlag(MCAssemblerFlag Flag);
virtual void EmitThumbFunc(MCSymbol *Func);
virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value);
virtual void EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol);
virtual void EmitDwarfAdvanceLineAddr(int64_t LineDelta,
const MCSymbol *LastLabel,
const MCSymbol *Label,
unsigned PointerSize);
virtual void EmitDwarfAdvanceFrameAddr(const MCSymbol *LastLabel,
const MCSymbol *Label);
virtual void EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute);
virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue);
virtual void BeginCOFFSymbolDef(const MCSymbol *Symbol);
virtual void EmitCOFFSymbolStorageClass(int StorageClass);
virtual void EmitCOFFSymbolType(int Type);
virtual void EndCOFFSymbolDef();
virtual void EmitELFSize(MCSymbol *Symbol, const MCExpr *Value);
virtual void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment);
/// EmitLocalCommonSymbol - Emit a local common (.lcomm) symbol.
///
/// @param Symbol - The common symbol to emit.
/// @param Size - The size of the common symbol.
virtual void EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size);
virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0,
unsigned Size = 0, unsigned ByteAlignment = 0);
virtual void EmitTBSSSymbol (const MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment = 0);
virtual void EmitBytes(StringRef Data, unsigned AddrSpace);
virtual void EmitValueImpl(const MCExpr *Value, unsigned Size,
unsigned AddrSpace);
virtual void EmitIntValue(uint64_t Value, unsigned Size,
unsigned AddrSpace = 0);
virtual void EmitULEB128Value(const MCExpr *Value);
virtual void EmitSLEB128Value(const MCExpr *Value);
virtual void EmitGPRel32Value(const MCExpr *Value);
virtual void EmitFill(uint64_t NumBytes, uint8_t FillValue,
unsigned AddrSpace);
virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0,
unsigned ValueSize = 1,
unsigned MaxBytesToEmit = 0);
virtual void EmitCodeAlignment(unsigned ByteAlignment,
unsigned MaxBytesToEmit = 0);
virtual void EmitValueToOffset(const MCExpr *Offset,
unsigned char Value = 0);
virtual void EmitFileDirective(StringRef Filename);
virtual bool EmitDwarfFileDirective(unsigned FileNo, StringRef Filename);
virtual void EmitDwarfLocDirective(unsigned FileNo, unsigned Line,
unsigned Column, unsigned Flags,
unsigned Isa, unsigned Discriminator,
StringRef FileName);
virtual void EmitCFISections(bool EH, bool Debug);
virtual void EmitCFIStartProc();
virtual void EmitCFIEndProc();
virtual void EmitCFIDefCfa(int64_t Register, int64_t Offset);
virtual void EmitCFIDefCfaOffset(int64_t Offset);
virtual void EmitCFIDefCfaRegister(int64_t Register);
virtual void EmitCFIOffset(int64_t Register, int64_t Offset);
virtual void EmitCFIPersonality(const MCSymbol *Sym, unsigned Encoding);
virtual void EmitCFILsda(const MCSymbol *Sym, unsigned Encoding);
virtual void EmitCFIRememberState();
virtual void EmitCFIRestoreState();
virtual void EmitCFISameValue(int64_t Register);
virtual void EmitCFIRelOffset(int64_t Register, int64_t Offset);
virtual void EmitCFIAdjustCfaOffset(int64_t Adjustment);
virtual void EmitWin64EHStartProc(const MCSymbol *Symbol);
virtual void EmitWin64EHEndProc();
virtual void EmitWin64EHStartChained();
virtual void EmitWin64EHEndChained();
virtual void EmitWin64EHHandler(const MCSymbol *Sym, bool Unwind,
bool Except);
virtual void EmitWin64EHHandlerData();
virtual void EmitWin64EHPushReg(unsigned Register);
virtual void EmitWin64EHSetFrame(unsigned Register, unsigned Offset);
virtual void EmitWin64EHAllocStack(unsigned Size);
virtual void EmitWin64EHSaveReg(unsigned Register, unsigned Offset);
virtual void EmitWin64EHSaveXMM(unsigned Register, unsigned Offset);
virtual void EmitWin64EHPushFrame(bool Code);
virtual void EmitWin64EHEndProlog();
virtual void EmitFnStart();
virtual void EmitFnEnd();
virtual void EmitCantUnwind();
virtual void EmitPersonality(const MCSymbol *Personality);
virtual void EmitHandlerData();
virtual void EmitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0);
virtual void EmitPad(int64_t Offset);
virtual void EmitRegSave(const SmallVectorImpl<unsigned> &RegList, bool);
virtual void EmitInstruction(const MCInst &Inst);
/// EmitRawText - If this file is backed by an assembly streamer, this dumps
/// the specified string in the output .s file. This capability is
/// indicated by the hasRawTextSupport() predicate.
virtual void EmitRawText(StringRef String);
virtual void Finish();
/// @}
};
} // end anonymous namespace.
/// AddComment - Add a comment that can be emitted to the generated .s
/// file if applicable as a QoI issue to make the output of the compiler
/// more readable. This only affects the MCAsmStreamer, and only when
/// verbose assembly output is enabled.
void MCAsmStreamer::AddComment(const Twine &T) {
if (!IsVerboseAsm) return;
// Make sure that CommentStream is flushed.
CommentStream.flush();
T.toVector(CommentToEmit);
// Each comment goes on its own line.
CommentToEmit.push_back('\n');
// Tell the comment stream that the vector changed underneath it.
CommentStream.resync();
}
void MCAsmStreamer::EmitCommentsAndEOL() {
if (CommentToEmit.empty() && CommentStream.GetNumBytesInBuffer() == 0) {
OS << '\n';
return;
}
CommentStream.flush();
StringRef Comments = CommentToEmit.str();
assert(Comments.back() == '\n' &&
"Comment array not newline terminated");
do {
// Emit a line of comments.
OS.PadToColumn(MAI.getCommentColumn());
size_t Position = Comments.find('\n');
OS << MAI.getCommentString() << ' ' << Comments.substr(0, Position) << '\n';
Comments = Comments.substr(Position+1);
} while (!Comments.empty());
CommentToEmit.clear();
// Tell the comment stream that the vector changed underneath it.
CommentStream.resync();
}
static inline int64_t truncateToSize(int64_t Value, unsigned Bytes) {
assert(Bytes && "Invalid size!");
return Value & ((uint64_t) (int64_t) -1 >> (64 - Bytes * 8));
}
void MCAsmStreamer::ChangeSection(const MCSection *Section) {
assert(Section && "Cannot switch to a null section!");
Section->PrintSwitchToSection(MAI, OS);
}
void MCAsmStreamer::EmitEHSymAttributes(const MCSymbol *Symbol,
MCSymbol *EHSymbol) {
if (UseCFI)
return;
unsigned Flags = FlagMap.lookup(Symbol);
if (Flags & EHGlobal)
EmitSymbolAttribute(EHSymbol, MCSA_Global);
if (Flags & EHWeakDefinition)
EmitSymbolAttribute(EHSymbol, MCSA_WeakDefinition);
if (Flags & EHPrivateExtern)
EmitSymbolAttribute(EHSymbol, MCSA_PrivateExtern);
}
void MCAsmStreamer::EmitLabel(MCSymbol *Symbol) {
assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
MCStreamer::EmitLabel(Symbol);
OS << *Symbol << MAI.getLabelSuffix();
EmitEOL();
}
void MCAsmStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) {
switch (Flag) {
default: assert(0 && "Invalid flag!");
case MCAF_SyntaxUnified: OS << "\t.syntax unified"; break;
case MCAF_SubsectionsViaSymbols: OS << ".subsections_via_symbols"; break;
case MCAF_Code16: OS << "\t.code\t16"; break;
case MCAF_Code32: OS << "\t.code\t32"; break;
}
EmitEOL();
}
void MCAsmStreamer::EmitThumbFunc(MCSymbol *Func) {
// This needs to emit to a temporary string to get properly quoted
// MCSymbols when they have spaces in them.
OS << "\t.thumb_func";
// Only Mach-O hasSubsectionsViaSymbols()
if (MAI.hasSubsectionsViaSymbols())
OS << '\t' << *Func;
EmitEOL();
}
void MCAsmStreamer::EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) {
OS << *Symbol << " = " << *Value;
EmitEOL();
// FIXME: Lift context changes into super class.
Symbol->setVariableValue(Value);
}
void MCAsmStreamer::EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol) {
OS << ".weakref " << *Alias << ", " << *Symbol;
EmitEOL();
}
void MCAsmStreamer::EmitDwarfAdvanceLineAddr(int64_t LineDelta,
const MCSymbol *LastLabel,
const MCSymbol *Label,
unsigned PointerSize) {
EmitDwarfSetLineAddr(LineDelta, Label, PointerSize);
}
void MCAsmStreamer::EmitDwarfAdvanceFrameAddr(const MCSymbol *LastLabel,
const MCSymbol *Label) {
EmitIntValue(dwarf::DW_CFA_advance_loc4, 1);
const MCExpr *AddrDelta = BuildSymbolDiff(getContext(), Label, LastLabel);
AddrDelta = ForceExpAbs(AddrDelta);
EmitValue(AddrDelta, 4);
}
void MCAsmStreamer::EmitSymbolAttribute(MCSymbol *Symbol,
MCSymbolAttr Attribute) {
switch (Attribute) {
case MCSA_Invalid: assert(0 && "Invalid symbol attribute");
case MCSA_ELF_TypeFunction: /// .type _foo, STT_FUNC # aka @function
case MCSA_ELF_TypeIndFunction: /// .type _foo, STT_GNU_IFUNC
case MCSA_ELF_TypeObject: /// .type _foo, STT_OBJECT # aka @object
case MCSA_ELF_TypeTLS: /// .type _foo, STT_TLS # aka @tls_object
case MCSA_ELF_TypeCommon: /// .type _foo, STT_COMMON # aka @common
case MCSA_ELF_TypeNoType: /// .type _foo, STT_NOTYPE # aka @notype
case MCSA_ELF_TypeGnuUniqueObject: /// .type _foo, @gnu_unique_object
assert(MAI.hasDotTypeDotSizeDirective() && "Symbol Attr not supported");
OS << "\t.type\t" << *Symbol << ','
<< ((MAI.getCommentString()[0] != '@') ? '@' : '%');
switch (Attribute) {
default: assert(0 && "Unknown ELF .type");
case MCSA_ELF_TypeFunction: OS << "function"; break;
case MCSA_ELF_TypeIndFunction: OS << "gnu_indirect_function"; break;
case MCSA_ELF_TypeObject: OS << "object"; break;
case MCSA_ELF_TypeTLS: OS << "tls_object"; break;
case MCSA_ELF_TypeCommon: OS << "common"; break;
case MCSA_ELF_TypeNoType: OS << "no_type"; break;
case MCSA_ELF_TypeGnuUniqueObject: OS << "gnu_unique_object"; break;
}
EmitEOL();
return;
case MCSA_Global: // .globl/.global
OS << MAI.getGlobalDirective();
FlagMap[Symbol] |= EHGlobal;
break;
case MCSA_Hidden: OS << "\t.hidden\t"; break;
case MCSA_IndirectSymbol: OS << "\t.indirect_symbol\t"; break;
case MCSA_Internal: OS << "\t.internal\t"; break;
case MCSA_LazyReference: OS << "\t.lazy_reference\t"; break;
case MCSA_Local: OS << "\t.local\t"; break;
case MCSA_NoDeadStrip: OS << "\t.no_dead_strip\t"; break;
case MCSA_SymbolResolver: OS << "\t.symbol_resolver\t"; break;
case MCSA_PrivateExtern:
OS << "\t.private_extern\t";
FlagMap[Symbol] |= EHPrivateExtern;
break;
case MCSA_Protected: OS << "\t.protected\t"; break;
case MCSA_Reference: OS << "\t.reference\t"; break;
case MCSA_Weak: OS << "\t.weak\t"; break;
case MCSA_WeakDefinition:
OS << "\t.weak_definition\t";
FlagMap[Symbol] |= EHWeakDefinition;
break;
// .weak_reference
case MCSA_WeakReference: OS << MAI.getWeakRefDirective(); break;
case MCSA_WeakDefAutoPrivate: OS << "\t.weak_def_can_be_hidden\t"; break;
}
OS << *Symbol;
EmitEOL();
}
void MCAsmStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {
OS << ".desc" << ' ' << *Symbol << ',' << DescValue;
EmitEOL();
}
void MCAsmStreamer::BeginCOFFSymbolDef(const MCSymbol *Symbol) {
OS << "\t.def\t " << *Symbol << ';';
EmitEOL();
}
void MCAsmStreamer::EmitCOFFSymbolStorageClass (int StorageClass) {
OS << "\t.scl\t" << StorageClass << ';';
EmitEOL();
}
void MCAsmStreamer::EmitCOFFSymbolType (int Type) {
OS << "\t.type\t" << Type << ';';
EmitEOL();
}
void MCAsmStreamer::EndCOFFSymbolDef() {
OS << "\t.endef";
EmitEOL();
}
void MCAsmStreamer::EmitELFSize(MCSymbol *Symbol, const MCExpr *Value) {
assert(MAI.hasDotTypeDotSizeDirective());
OS << "\t.size\t" << *Symbol << ", " << *Value << '\n';
}
void MCAsmStreamer::EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size,
unsigned ByteAlignment) {
OS << "\t.comm\t" << *Symbol << ',' << Size;
if (ByteAlignment != 0) {
if (MAI.getCOMMDirectiveAlignmentIsInBytes())
OS << ',' << ByteAlignment;
else
OS << ',' << Log2_32(ByteAlignment);
}
EmitEOL();
}
/// EmitLocalCommonSymbol - Emit a local common (.lcomm) symbol.
///
/// @param Symbol - The common symbol to emit.
/// @param Size - The size of the common symbol.
void MCAsmStreamer::EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size) {
assert(MAI.hasLCOMMDirective() && "Doesn't have .lcomm, can't emit it!");
OS << "\t.lcomm\t" << *Symbol << ',' << Size;
EmitEOL();
}
void MCAsmStreamer::EmitZerofill(const MCSection *Section, MCSymbol *Symbol,
unsigned Size, unsigned ByteAlignment) {
// Note: a .zerofill directive does not switch sections.
OS << ".zerofill ";
// This is a mach-o specific directive.
const MCSectionMachO *MOSection = ((const MCSectionMachO*)Section);
OS << MOSection->getSegmentName() << "," << MOSection->getSectionName();
if (Symbol != NULL) {
OS << ',' << *Symbol << ',' << Size;
if (ByteAlignment != 0)
OS << ',' << Log2_32(ByteAlignment);
}
EmitEOL();
}
// .tbss sym, size, align
// This depends that the symbol has already been mangled from the original,
// e.g. _a.
void MCAsmStreamer::EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment) {
assert(Symbol != NULL && "Symbol shouldn't be NULL!");
// Instead of using the Section we'll just use the shortcut.
// This is a mach-o specific directive and section.
OS << ".tbss " << *Symbol << ", " << Size;
// Output align if we have it. We default to 1 so don't bother printing
// that.
if (ByteAlignment > 1) OS << ", " << Log2_32(ByteAlignment);
EmitEOL();
}
static inline char toOctal(int X) { return (X&7)+'0'; }
static void PrintQuotedString(StringRef Data, raw_ostream &OS) {
OS << '"';
for (unsigned i = 0, e = Data.size(); i != e; ++i) {
unsigned char C = Data[i];
if (C == '"' || C == '\\') {
OS << '\\' << (char)C;
continue;
}
if (isprint((unsigned char)C)) {
OS << (char)C;
continue;
}
switch (C) {
case '\b': OS << "\\b"; break;
case '\f': OS << "\\f"; break;
case '\n': OS << "\\n"; break;
case '\r': OS << "\\r"; break;
case '\t': OS << "\\t"; break;
default:
OS << '\\';
OS << toOctal(C >> 6);
OS << toOctal(C >> 3);
OS << toOctal(C >> 0);
break;
}
}
OS << '"';
}
void MCAsmStreamer::EmitBytes(StringRef Data, unsigned AddrSpace) {
assert(getCurrentSection() && "Cannot emit contents before setting section!");
if (Data.empty()) return;
if (Data.size() == 1) {
OS << MAI.getData8bitsDirective(AddrSpace);
OS << (unsigned)(unsigned char)Data[0];
EmitEOL();
return;
}
// If the data ends with 0 and the target supports .asciz, use it, otherwise
// use .ascii
if (MAI.getAscizDirective() && Data.back() == 0) {
OS << MAI.getAscizDirective();
Data = Data.substr(0, Data.size()-1);
} else {
OS << MAI.getAsciiDirective();
}
OS << ' ';
PrintQuotedString(Data, OS);
EmitEOL();
}
void MCAsmStreamer::EmitIntValue(uint64_t Value, unsigned Size,
unsigned AddrSpace) {
EmitValue(MCConstantExpr::Create(Value, getContext()), Size, AddrSpace);
}
void MCAsmStreamer::EmitValueImpl(const MCExpr *Value, unsigned Size,
unsigned AddrSpace) {
assert(getCurrentSection() && "Cannot emit contents before setting section!");
const char *Directive = 0;
switch (Size) {
default: break;
case 1: Directive = MAI.getData8bitsDirective(AddrSpace); break;
case 2: Directive = MAI.getData16bitsDirective(AddrSpace); break;
case 4: Directive = MAI.getData32bitsDirective(AddrSpace); break;
case 8:
Directive = MAI.getData64bitsDirective(AddrSpace);
// If the target doesn't support 64-bit data, emit as two 32-bit halves.
if (Directive) break;
int64_t IntValue;
if (!Value->EvaluateAsAbsolute(IntValue))
report_fatal_error("Don't know how to emit this value.");
if (getContext().getAsmInfo().isLittleEndian()) {
EmitIntValue((uint32_t)(IntValue >> 0 ), 4, AddrSpace);
EmitIntValue((uint32_t)(IntValue >> 32), 4, AddrSpace);
} else {
EmitIntValue((uint32_t)(IntValue >> 32), 4, AddrSpace);
EmitIntValue((uint32_t)(IntValue >> 0 ), 4, AddrSpace);
}
return;
}
assert(Directive && "Invalid size for machine code value!");
OS << Directive << *Value;
EmitEOL();
}
void MCAsmStreamer::EmitULEB128Value(const MCExpr *Value) {
int64_t IntValue;
if (Value->EvaluateAsAbsolute(IntValue)) {
EmitULEB128IntValue(IntValue);
return;
}
assert(MAI.hasLEB128() && "Cannot print a .uleb");
OS << ".uleb128 " << *Value;
EmitEOL();
}
void MCAsmStreamer::EmitSLEB128Value(const MCExpr *Value) {
int64_t IntValue;
if (Value->EvaluateAsAbsolute(IntValue)) {
EmitSLEB128IntValue(IntValue);
return;
}
assert(MAI.hasLEB128() && "Cannot print a .sleb");
OS << ".sleb128 " << *Value;
EmitEOL();
}
void MCAsmStreamer::EmitGPRel32Value(const MCExpr *Value) {
assert(MAI.getGPRel32Directive() != 0);
OS << MAI.getGPRel32Directive() << *Value;
EmitEOL();
}
/// EmitFill - Emit NumBytes bytes worth of the value specified by
/// FillValue. This implements directives such as '.space'.
void MCAsmStreamer::EmitFill(uint64_t NumBytes, uint8_t FillValue,
unsigned AddrSpace) {
if (NumBytes == 0) return;
if (AddrSpace == 0)
if (const char *ZeroDirective = MAI.getZeroDirective()) {
OS << ZeroDirective << NumBytes;
if (FillValue != 0)
OS << ',' << (int)FillValue;
EmitEOL();
return;
}
// Emit a byte at a time.
MCStreamer::EmitFill(NumBytes, FillValue, AddrSpace);
}
void MCAsmStreamer::EmitValueToAlignment(unsigned ByteAlignment, int64_t Value,
unsigned ValueSize,
unsigned MaxBytesToEmit) {
// Some assemblers don't support non-power of two alignments, so we always
// emit alignments as a power of two if possible.
if (isPowerOf2_32(ByteAlignment)) {
switch (ValueSize) {
default: llvm_unreachable("Invalid size for machine code value!");
case 1: OS << MAI.getAlignDirective(); break;
// FIXME: use MAI for this!
case 2: OS << ".p2alignw "; break;
case 4: OS << ".p2alignl "; break;
case 8: llvm_unreachable("Unsupported alignment size!");
}
if (MAI.getAlignmentIsInBytes())
OS << ByteAlignment;
else
OS << Log2_32(ByteAlignment);
if (Value || MaxBytesToEmit) {
OS << ", 0x";
OS.write_hex(truncateToSize(Value, ValueSize));
if (MaxBytesToEmit)
OS << ", " << MaxBytesToEmit;
}
EmitEOL();
return;
}
// Non-power of two alignment. This is not widely supported by assemblers.
// FIXME: Parameterize this based on MAI.
switch (ValueSize) {
default: llvm_unreachable("Invalid size for machine code value!");
case 1: OS << ".balign"; break;
case 2: OS << ".balignw"; break;
case 4: OS << ".balignl"; break;
case 8: llvm_unreachable("Unsupported alignment size!");
}
OS << ' ' << ByteAlignment;
OS << ", " << truncateToSize(Value, ValueSize);
if (MaxBytesToEmit)
OS << ", " << MaxBytesToEmit;
EmitEOL();
}
void MCAsmStreamer::EmitCodeAlignment(unsigned ByteAlignment,
unsigned MaxBytesToEmit) {
// Emit with a text fill value.
EmitValueToAlignment(ByteAlignment, MAI.getTextAlignFillValue(),
1, MaxBytesToEmit);
}
void MCAsmStreamer::EmitValueToOffset(const MCExpr *Offset,
unsigned char Value) {
// FIXME: Verify that Offset is associated with the current section.
OS << ".org " << *Offset << ", " << (unsigned) Value;
EmitEOL();
}
void MCAsmStreamer::EmitFileDirective(StringRef Filename) {
assert(MAI.hasSingleParameterDotFile());
OS << "\t.file\t";
PrintQuotedString(Filename, OS);
EmitEOL();
}
bool MCAsmStreamer::EmitDwarfFileDirective(unsigned FileNo, StringRef Filename){
if (UseLoc) {
OS << "\t.file\t" << FileNo << ' ';
PrintQuotedString(Filename, OS);
EmitEOL();
}
return this->MCStreamer::EmitDwarfFileDirective(FileNo, Filename);
}
void MCAsmStreamer::EmitDwarfLocDirective(unsigned FileNo, unsigned Line,
unsigned Column, unsigned Flags,
unsigned Isa,
unsigned Discriminator,
StringRef FileName) {
this->MCStreamer::EmitDwarfLocDirective(FileNo, Line, Column, Flags,
Isa, Discriminator, FileName);
if (!UseLoc)
return;
OS << "\t.loc\t" << FileNo << " " << Line << " " << Column;
if (Flags & DWARF2_FLAG_BASIC_BLOCK)
OS << " basic_block";
if (Flags & DWARF2_FLAG_PROLOGUE_END)
OS << " prologue_end";
if (Flags & DWARF2_FLAG_EPILOGUE_BEGIN)
OS << " epilogue_begin";
unsigned OldFlags = getContext().getCurrentDwarfLoc().getFlags();
if ((Flags & DWARF2_FLAG_IS_STMT) != (OldFlags & DWARF2_FLAG_IS_STMT)) {
OS << " is_stmt ";
if (Flags & DWARF2_FLAG_IS_STMT)
OS << "1";
else
OS << "0";
}
if (Isa)
OS << "isa " << Isa;
if (Discriminator)
OS << "discriminator " << Discriminator;
if (IsVerboseAsm) {
OS.PadToColumn(MAI.getCommentColumn());
OS << MAI.getCommentString() << ' ' << FileName << ':'
<< Line << ':' << Column;
}
EmitEOL();
}
void MCAsmStreamer::EmitCFISections(bool EH, bool Debug) {
MCStreamer::EmitCFISections(EH, Debug);
if (!UseCFI)
return;
OS << "\t.cfi_sections ";
if (EH) {
OS << ".eh_frame";
if (Debug)
OS << ", .debug_frame";
} else if (Debug) {
OS << ".debug_frame";
}
EmitEOL();
}
void MCAsmStreamer::EmitCFIStartProc() {
MCStreamer::EmitCFIStartProc();
if (!UseCFI)
return;
OS << "\t.cfi_startproc";
EmitEOL();
}
void MCAsmStreamer::EmitCFIEndProc() {
MCStreamer::EmitCFIEndProc();
if (!UseCFI)
return;
OS << "\t.cfi_endproc";
EmitEOL();
}
void MCAsmStreamer::EmitRegisterName(int64_t Register) {
if (InstPrinter && !MAI.useDwarfRegNumForCFI()) {
const MCRegisterInfo &MRI = getContext().getRegisterInfo();
unsigned LLVMRegister = MRI.getLLVMRegNum(Register, true);
InstPrinter->printRegName(OS, LLVMRegister);
} else {
OS << Register;
}
}
void MCAsmStreamer::EmitCFIDefCfa(int64_t Register, int64_t Offset) {
MCStreamer::EmitCFIDefCfa(Register, Offset);
if (!UseCFI)
return;
OS << "\t.cfi_def_cfa ";
EmitRegisterName(Register);
OS << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitCFIDefCfaOffset(int64_t Offset) {
MCStreamer::EmitCFIDefCfaOffset(Offset);
if (!UseCFI)
return;
OS << "\t.cfi_def_cfa_offset " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitCFIDefCfaRegister(int64_t Register) {
MCStreamer::EmitCFIDefCfaRegister(Register);
if (!UseCFI)
return;
OS << "\t.cfi_def_cfa_register ";
EmitRegisterName(Register);
EmitEOL();
}
void MCAsmStreamer::EmitCFIOffset(int64_t Register, int64_t Offset) {
this->MCStreamer::EmitCFIOffset(Register, Offset);
if (!UseCFI)
return;
OS << "\t.cfi_offset ";
EmitRegisterName(Register);
OS << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitCFIPersonality(const MCSymbol *Sym,
unsigned Encoding) {
MCStreamer::EmitCFIPersonality(Sym, Encoding);
if (!UseCFI)
return;
OS << "\t.cfi_personality " << Encoding << ", " << *Sym;
EmitEOL();
}
void MCAsmStreamer::EmitCFILsda(const MCSymbol *Sym, unsigned Encoding) {
MCStreamer::EmitCFILsda(Sym, Encoding);
if (!UseCFI)
return;
OS << "\t.cfi_lsda " << Encoding << ", " << *Sym;
EmitEOL();
}
void MCAsmStreamer::EmitCFIRememberState() {
MCStreamer::EmitCFIRememberState();
if (!UseCFI)
return;
OS << "\t.cfi_remember_state";
EmitEOL();
}
void MCAsmStreamer::EmitCFIRestoreState() {
MCStreamer::EmitCFIRestoreState();
if (!UseCFI)
return;
OS << "\t.cfi_restore_state";
EmitEOL();
}
void MCAsmStreamer::EmitCFISameValue(int64_t Register) {
MCStreamer::EmitCFISameValue(Register);
if (!UseCFI)
return;
OS << "\t.cfi_same_value ";
EmitRegisterName(Register);
EmitEOL();
}
void MCAsmStreamer::EmitCFIRelOffset(int64_t Register, int64_t Offset) {
MCStreamer::EmitCFIRelOffset(Register, Offset);
if (!UseCFI)
return;
OS << "\t.cfi_rel_offset ";
EmitRegisterName(Register);
OS << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitCFIAdjustCfaOffset(int64_t Adjustment) {
MCStreamer::EmitCFIAdjustCfaOffset(Adjustment);
if (!UseCFI)
return;
OS << "\t.cfi_adjust_cfa_offset " << Adjustment;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHStartProc(const MCSymbol *Symbol) {
MCStreamer::EmitWin64EHStartProc(Symbol);
OS << ".seh_proc " << *Symbol;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHEndProc() {
MCStreamer::EmitWin64EHEndProc();
OS << "\t.seh_endproc";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHStartChained() {
MCStreamer::EmitWin64EHStartChained();
OS << "\t.seh_startchained";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHEndChained() {
MCStreamer::EmitWin64EHEndChained();
OS << "\t.seh_endchained";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHHandler(const MCSymbol *Sym, bool Unwind,
bool Except) {
MCStreamer::EmitWin64EHHandler(Sym, Unwind, Except);
OS << "\t.seh_handler " << *Sym;
if (Unwind)
OS << ", @unwind";
if (Except)
OS << ", @except";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHHandlerData() {
MCStreamer::EmitWin64EHHandlerData();
// Switch sections. Don't call SwitchSection directly, because that will
// cause the section switch to be visible in the emitted assembly.
// We only do this so the section switch that terminates the handler
// data block is visible.
MCWin64EHUnwindInfo *CurFrame = getCurrentW64UnwindInfo();
StringRef suffix=MCWin64EHUnwindEmitter::GetSectionSuffix(CurFrame->Function);
const MCSection *xdataSect =
getContext().getTargetAsmInfo().getWin64EHTableSection(suffix);
if (xdataSect)
SwitchSectionNoChange(xdataSect);
OS << "\t.seh_handlerdata";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHPushReg(unsigned Register) {
MCStreamer::EmitWin64EHPushReg(Register);
OS << "\t.seh_pushreg " << Register;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHSetFrame(unsigned Register, unsigned Offset) {
MCStreamer::EmitWin64EHSetFrame(Register, Offset);
OS << "\t.seh_setframe " << Register << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHAllocStack(unsigned Size) {
MCStreamer::EmitWin64EHAllocStack(Size);
OS << "\t.seh_stackalloc " << Size;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHSaveReg(unsigned Register, unsigned Offset) {
MCStreamer::EmitWin64EHSaveReg(Register, Offset);
OS << "\t.seh_savereg " << Register << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHSaveXMM(unsigned Register, unsigned Offset) {
MCStreamer::EmitWin64EHSaveXMM(Register, Offset);
OS << "\t.seh_savexmm " << Register << ", " << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHPushFrame(bool Code) {
MCStreamer::EmitWin64EHPushFrame(Code);
OS << "\t.seh_pushframe";
if (Code)
OS << " @code";
EmitEOL();
}
void MCAsmStreamer::EmitWin64EHEndProlog(void) {
MCStreamer::EmitWin64EHEndProlog();
OS << "\t.seh_endprologue";
EmitEOL();
}
void MCAsmStreamer::AddEncodingComment(const MCInst &Inst) {
raw_ostream &OS = GetCommentOS();
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
raw_svector_ostream VecOS(Code);
Emitter->EncodeInstruction(Inst, VecOS, Fixups);
VecOS.flush();
// If we are showing fixups, create symbolic markers in the encoded
// representation. We do this by making a per-bit map to the fixup item index,
// then trying to display it as nicely as possible.
SmallVector<uint8_t, 64> FixupMap;
FixupMap.resize(Code.size() * 8);
for (unsigned i = 0, e = Code.size() * 8; i != e; ++i)
FixupMap[i] = 0;
for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
MCFixup &F = Fixups[i];
const MCFixupKindInfo &Info = AsmBackend->getFixupKindInfo(F.getKind());
for (unsigned j = 0; j != Info.TargetSize; ++j) {
unsigned Index = F.getOffset() * 8 + Info.TargetOffset + j;
assert(Index < Code.size() * 8 && "Invalid offset in fixup!");
FixupMap[Index] = 1 + i;
}
}
// FIXME: Note the fixup comments for Thumb2 are completely bogus since the
// high order halfword of a 32-bit Thumb2 instruction is emitted first.
OS << "encoding: [";
for (unsigned i = 0, e = Code.size(); i != e; ++i) {
if (i)
OS << ',';
// See if all bits are the same map entry.
uint8_t MapEntry = FixupMap[i * 8 + 0];
for (unsigned j = 1; j != 8; ++j) {
if (FixupMap[i * 8 + j] == MapEntry)
continue;
MapEntry = uint8_t(~0U);
break;
}
if (MapEntry != uint8_t(~0U)) {
if (MapEntry == 0) {
OS << format("0x%02x", uint8_t(Code[i]));
} else {
if (Code[i]) {
// FIXME: Some of the 8 bits require fix up.
OS << format("0x%02x", uint8_t(Code[i])) << '\''
<< char('A' + MapEntry - 1) << '\'';
} else
OS << char('A' + MapEntry - 1);
}
} else {
// Otherwise, write out in binary.
OS << "0b";
for (unsigned j = 8; j--;) {
unsigned Bit = (Code[i] >> j) & 1;
unsigned FixupBit;
if (getContext().getAsmInfo().isLittleEndian())
FixupBit = i * 8 + j;
else
FixupBit = i * 8 + (7-j);
if (uint8_t MapEntry = FixupMap[FixupBit]) {
assert(Bit == 0 && "Encoder wrote into fixed up bit!");
OS << char('A' + MapEntry - 1);
} else
OS << Bit;
}
}
}
OS << "]\n";
for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
MCFixup &F = Fixups[i];
const MCFixupKindInfo &Info = AsmBackend->getFixupKindInfo(F.getKind());
OS << " fixup " << char('A' + i) << " - " << "offset: " << F.getOffset()
<< ", value: " << *F.getValue() << ", kind: " << Info.Name << "\n";
}
}
void MCAsmStreamer::EmitFnStart() {
OS << "\t.fnstart";
EmitEOL();
}
void MCAsmStreamer::EmitFnEnd() {
OS << "\t.fnend";
EmitEOL();
}
void MCAsmStreamer::EmitCantUnwind() {
OS << "\t.cantunwind";
EmitEOL();
}
void MCAsmStreamer::EmitHandlerData() {
OS << "\t.handlerdata";
EmitEOL();
}
void MCAsmStreamer::EmitPersonality(const MCSymbol *Personality) {
OS << "\t.personality " << Personality->getName();
EmitEOL();
}
void MCAsmStreamer::EmitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset) {
OS << "\t.setfp\t";
InstPrinter->printRegName(OS, FpReg);
OS << ", ";
InstPrinter->printRegName(OS, SpReg);
if (Offset)
OS << ", #" << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitPad(int64_t Offset) {
OS << "\t.pad\t#" << Offset;
EmitEOL();
}
void MCAsmStreamer::EmitRegSave(const SmallVectorImpl<unsigned> &RegList,
bool isVector) {
assert(RegList.size() && "RegList should not be empty");
if (isVector)
OS << "\t.vsave\t{";
else
OS << "\t.save\t{";
InstPrinter->printRegName(OS, RegList[0]);
for (unsigned i = 1, e = RegList.size(); i != e; ++i) {
OS << ", ";
InstPrinter->printRegName(OS, RegList[i]);
}
OS << "}";
EmitEOL();
}
void MCAsmStreamer::EmitInstruction(const MCInst &Inst) {
assert(getCurrentSection() && "Cannot emit contents before setting section!");
// Show the encoding in a comment if we have a code emitter.
if (Emitter)
AddEncodingComment(Inst);
// Show the MCInst if enabled.
if (ShowInst) {
Inst.dump_pretty(GetCommentOS(), &MAI, InstPrinter.get(), "\n ");
GetCommentOS() << "\n";
}
// If we have an AsmPrinter, use that to print, otherwise print the MCInst.
if (InstPrinter)
InstPrinter->printInst(&Inst, OS);
else
Inst.print(OS, &MAI);
EmitEOL();
}
/// EmitRawText - If this file is backed by an assembly streamer, this dumps
/// the specified string in the output .s file. This capability is
/// indicated by the hasRawTextSupport() predicate.
void MCAsmStreamer::EmitRawText(StringRef String) {
if (!String.empty() && String.back() == '\n')
String = String.substr(0, String.size()-1);
OS << String;
EmitEOL();
}
void MCAsmStreamer::Finish() {
// Dump out the dwarf file & directory tables and line tables.
if (getContext().hasDwarfFiles() && !UseLoc)
MCDwarfFileTable::Emit(this);
if (!UseCFI)
EmitFrames(false);
}
MCStreamer *llvm::createAsmStreamer(MCContext &Context,
formatted_raw_ostream &OS,
bool isVerboseAsm, bool useLoc,
bool useCFI, MCInstPrinter *IP,
MCCodeEmitter *CE, TargetAsmBackend *TAB,
bool ShowInst) {
return new MCAsmStreamer(Context, OS, isVerboseAsm, useLoc, useCFI,
IP, CE, TAB, ShowInst);
}