mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-25 04:39:44 +00:00
c035c940a6
It is safe to move uses of such registers. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148259 91177308-0d34-0410-b5e6-96231b3b80d8
531 lines
19 KiB
C++
531 lines
19 KiB
C++
//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TargetInstrInfoImpl class, it just provides default
|
|
// implementations of various methods.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/MC/MCInstrItineraries.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> DisableHazardRecognizer(
|
|
"disable-sched-hazard", cl::Hidden, cl::init(false),
|
|
cl::desc("Disable hazard detection during preRA scheduling"));
|
|
|
|
/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
|
|
/// after it, replacing it with an unconditional branch to NewDest.
|
|
void
|
|
TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
|
|
MachineBasicBlock *NewDest) const {
|
|
MachineBasicBlock *MBB = Tail->getParent();
|
|
|
|
// Remove all the old successors of MBB from the CFG.
|
|
while (!MBB->succ_empty())
|
|
MBB->removeSuccessor(MBB->succ_begin());
|
|
|
|
// Remove all the dead instructions from the end of MBB.
|
|
MBB->erase(Tail, MBB->end());
|
|
|
|
// If MBB isn't immediately before MBB, insert a branch to it.
|
|
if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
|
|
InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
|
|
Tail->getDebugLoc());
|
|
MBB->addSuccessor(NewDest);
|
|
}
|
|
|
|
// commuteInstruction - The default implementation of this method just exchanges
|
|
// the two operands returned by findCommutedOpIndices.
|
|
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
|
|
bool NewMI) const {
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
bool HasDef = MCID.getNumDefs();
|
|
if (HasDef && !MI->getOperand(0).isReg())
|
|
// No idea how to commute this instruction. Target should implement its own.
|
|
return 0;
|
|
unsigned Idx1, Idx2;
|
|
if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
|
|
std::string msg;
|
|
raw_string_ostream Msg(msg);
|
|
Msg << "Don't know how to commute: " << *MI;
|
|
report_fatal_error(Msg.str());
|
|
}
|
|
|
|
assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
|
|
"This only knows how to commute register operands so far");
|
|
unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
|
|
unsigned Reg1 = MI->getOperand(Idx1).getReg();
|
|
unsigned Reg2 = MI->getOperand(Idx2).getReg();
|
|
bool Reg1IsKill = MI->getOperand(Idx1).isKill();
|
|
bool Reg2IsKill = MI->getOperand(Idx2).isKill();
|
|
// If destination is tied to either of the commuted source register, then
|
|
// it must be updated.
|
|
if (HasDef && Reg0 == Reg1 &&
|
|
MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
|
|
Reg2IsKill = false;
|
|
Reg0 = Reg2;
|
|
} else if (HasDef && Reg0 == Reg2 &&
|
|
MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
|
|
Reg1IsKill = false;
|
|
Reg0 = Reg1;
|
|
}
|
|
|
|
if (NewMI) {
|
|
// Create a new instruction.
|
|
bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
if (HasDef)
|
|
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
|
|
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg2IsKill));
|
|
else
|
|
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg2IsKill));
|
|
}
|
|
|
|
if (HasDef)
|
|
MI->getOperand(0).setReg(Reg0);
|
|
MI->getOperand(Idx2).setReg(Reg1);
|
|
MI->getOperand(Idx1).setReg(Reg2);
|
|
MI->getOperand(Idx2).setIsKill(Reg1IsKill);
|
|
MI->getOperand(Idx1).setIsKill(Reg2IsKill);
|
|
return MI;
|
|
}
|
|
|
|
/// findCommutedOpIndices - If specified MI is commutable, return the two
|
|
/// operand indices that would swap value. Return true if the instruction
|
|
/// is not in a form which this routine understands.
|
|
bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const {
|
|
assert(!MI->isBundle() &&
|
|
"TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles");
|
|
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
if (!MCID.isCommutable())
|
|
return false;
|
|
// This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
|
|
// is not true, then the target must implement this.
|
|
SrcOpIdx1 = MCID.getNumDefs();
|
|
SrcOpIdx2 = SrcOpIdx1 + 1;
|
|
if (!MI->getOperand(SrcOpIdx1).isReg() ||
|
|
!MI->getOperand(SrcOpIdx2).isReg())
|
|
// No idea.
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool
|
|
TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const {
|
|
if (!MI->isTerminator()) return false;
|
|
|
|
// Conditional branch is a special case.
|
|
if (MI->isBranch() && !MI->isBarrier())
|
|
return true;
|
|
if (!MI->isPredicable())
|
|
return true;
|
|
return !isPredicated(MI);
|
|
}
|
|
|
|
|
|
bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
|
|
const SmallVectorImpl<MachineOperand> &Pred) const {
|
|
bool MadeChange = false;
|
|
|
|
assert(!MI->isBundle() &&
|
|
"TargetInstrInfoImpl::PredicateInstruction() can't handle bundles");
|
|
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
if (!MI->isPredicable())
|
|
return false;
|
|
|
|
for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
if (MCID.OpInfo[i].isPredicate()) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg()) {
|
|
MO.setReg(Pred[j].getReg());
|
|
MadeChange = true;
|
|
} else if (MO.isImm()) {
|
|
MO.setImm(Pred[j].getImm());
|
|
MadeChange = true;
|
|
} else if (MO.isMBB()) {
|
|
MO.setMBB(Pred[j].getMBB());
|
|
MadeChange = true;
|
|
}
|
|
++j;
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
|
|
const MachineMemOperand *&MMO,
|
|
int &FrameIndex) const {
|
|
for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
|
|
oe = MI->memoperands_end();
|
|
o != oe;
|
|
++o) {
|
|
if ((*o)->isLoad() && (*o)->getValue())
|
|
if (const FixedStackPseudoSourceValue *Value =
|
|
dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
|
|
FrameIndex = Value->getFrameIndex();
|
|
MMO = *o;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
|
|
const MachineMemOperand *&MMO,
|
|
int &FrameIndex) const {
|
|
for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
|
|
oe = MI->memoperands_end();
|
|
o != oe;
|
|
++o) {
|
|
if ((*o)->isStore() && (*o)->getValue())
|
|
if (const FixedStackPseudoSourceValue *Value =
|
|
dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
|
|
FrameIndex = Value->getFrameIndex();
|
|
MMO = *o;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned DestReg,
|
|
unsigned SubIdx,
|
|
const MachineInstr *Orig,
|
|
const TargetRegisterInfo &TRI) const {
|
|
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
|
|
MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
|
|
MBB.insert(I, MI);
|
|
}
|
|
|
|
bool
|
|
TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
|
|
const MachineInstr *MI1,
|
|
const MachineRegisterInfo *MRI) const {
|
|
return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
|
|
}
|
|
|
|
MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
|
|
MachineFunction &MF) const {
|
|
assert(!Orig->isNotDuplicable() &&
|
|
"Instruction cannot be duplicated");
|
|
return MF.CloneMachineInstr(Orig);
|
|
}
|
|
|
|
// If the COPY instruction in MI can be folded to a stack operation, return
|
|
// the register class to use.
|
|
static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
|
|
unsigned FoldIdx) {
|
|
assert(MI->isCopy() && "MI must be a COPY instruction");
|
|
if (MI->getNumOperands() != 2)
|
|
return 0;
|
|
assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
|
|
|
|
const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
|
|
const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
|
|
|
|
if (FoldOp.getSubReg() || LiveOp.getSubReg())
|
|
return 0;
|
|
|
|
unsigned FoldReg = FoldOp.getReg();
|
|
unsigned LiveReg = LiveOp.getReg();
|
|
|
|
assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
|
|
"Cannot fold physregs");
|
|
|
|
const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
|
|
return RC->contains(LiveOp.getReg()) ? RC : 0;
|
|
|
|
if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
|
|
return RC;
|
|
|
|
// FIXME: Allow folding when register classes are memory compatible.
|
|
return 0;
|
|
}
|
|
|
|
bool TargetInstrInfoImpl::
|
|
canFoldMemoryOperand(const MachineInstr *MI,
|
|
const SmallVectorImpl<unsigned> &Ops) const {
|
|
return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
|
|
}
|
|
|
|
/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
|
|
/// slot into the specified machine instruction for the specified operand(s).
|
|
/// If this is possible, a new instruction is returned with the specified
|
|
/// operand folded, otherwise NULL is returned. The client is responsible for
|
|
/// removing the old instruction and adding the new one in the instruction
|
|
/// stream.
|
|
MachineInstr*
|
|
TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
int FI) const {
|
|
unsigned Flags = 0;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
if (MI->getOperand(Ops[i]).isDef())
|
|
Flags |= MachineMemOperand::MOStore;
|
|
else
|
|
Flags |= MachineMemOperand::MOLoad;
|
|
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
assert(MBB && "foldMemoryOperand needs an inserted instruction");
|
|
MachineFunction &MF = *MBB->getParent();
|
|
|
|
// Ask the target to do the actual folding.
|
|
if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
|
|
// Add a memory operand, foldMemoryOperandImpl doesn't do that.
|
|
assert((!(Flags & MachineMemOperand::MOStore) ||
|
|
NewMI->mayStore()) &&
|
|
"Folded a def to a non-store!");
|
|
assert((!(Flags & MachineMemOperand::MOLoad) ||
|
|
NewMI->mayLoad()) &&
|
|
"Folded a use to a non-load!");
|
|
const MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
assert(MFI.getObjectOffset(FI) != -1);
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
|
|
Flags, MFI.getObjectSize(FI),
|
|
MFI.getObjectAlignment(FI));
|
|
NewMI->addMemOperand(MF, MMO);
|
|
|
|
// FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
|
|
return MBB->insert(MI, NewMI);
|
|
}
|
|
|
|
// Straight COPY may fold as load/store.
|
|
if (!MI->isCopy() || Ops.size() != 1)
|
|
return 0;
|
|
|
|
const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
|
|
if (!RC)
|
|
return 0;
|
|
|
|
const MachineOperand &MO = MI->getOperand(1-Ops[0]);
|
|
MachineBasicBlock::iterator Pos = MI;
|
|
const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
|
|
|
|
if (Flags == MachineMemOperand::MOStore)
|
|
storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
|
|
else
|
|
loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
|
|
return --Pos;
|
|
}
|
|
|
|
/// foldMemoryOperand - Same as the previous version except it allows folding
|
|
/// of any load and store from / to any address, not just from a specific
|
|
/// stack slot.
|
|
MachineInstr*
|
|
TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
MachineInstr* LoadMI) const {
|
|
assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
|
|
#endif
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
|
|
// Ask the target to do the actual folding.
|
|
MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
|
|
if (!NewMI) return 0;
|
|
|
|
NewMI = MBB.insert(MI, NewMI);
|
|
|
|
// Copy the memoperands from the load to the folded instruction.
|
|
NewMI->setMemRefs(LoadMI->memoperands_begin(),
|
|
LoadMI->memoperands_end());
|
|
|
|
return NewMI;
|
|
}
|
|
|
|
bool TargetInstrInfo::
|
|
isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
|
|
AliasAnalysis *AA) const {
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
|
|
// Remat clients assume operand 0 is the defined register.
|
|
if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
|
|
return false;
|
|
unsigned DefReg = MI->getOperand(0).getReg();
|
|
|
|
// A sub-register definition can only be rematerialized if the instruction
|
|
// doesn't read the other parts of the register. Otherwise it is really a
|
|
// read-modify-write operation on the full virtual register which cannot be
|
|
// moved safely.
|
|
if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
|
|
MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
|
|
return false;
|
|
|
|
// A load from a fixed stack slot can be rematerialized. This may be
|
|
// redundant with subsequent checks, but it's target-independent,
|
|
// simple, and a common case.
|
|
int FrameIdx = 0;
|
|
if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
|
|
MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
|
|
return true;
|
|
|
|
// Avoid instructions obviously unsafe for remat.
|
|
if (MI->isNotDuplicable() || MI->mayStore() ||
|
|
MI->hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// Don't remat inline asm. We have no idea how expensive it is
|
|
// even if it's side effect free.
|
|
if (MI->isInlineAsm())
|
|
return false;
|
|
|
|
// Avoid instructions which load from potentially varying memory.
|
|
if (MI->mayLoad() && !MI->isInvariantLoad(AA))
|
|
return false;
|
|
|
|
// If any of the registers accessed are non-constant, conservatively assume
|
|
// the instruction is not rematerializable.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
// Check for a well-behaved physical register.
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
if (MO.isUse()) {
|
|
// If the physreg has no defs anywhere, it's just an ambient register
|
|
// and we can freely move its uses. Alternatively, if it's allocatable,
|
|
// it could get allocated to something with a def during allocation.
|
|
if (!MRI.isConstantPhysReg(Reg, MF))
|
|
return false;
|
|
} else {
|
|
// A physreg def. We can't remat it.
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Only allow one virtual-register def. There may be multiple defs of the
|
|
// same virtual register, though.
|
|
if (MO.isDef() && Reg != DefReg)
|
|
return false;
|
|
|
|
// Don't allow any virtual-register uses. Rematting an instruction with
|
|
// virtual register uses would length the live ranges of the uses, which
|
|
// is not necessarily a good idea, certainly not "trivial".
|
|
if (MO.isUse())
|
|
return false;
|
|
}
|
|
|
|
// Everything checked out.
|
|
return true;
|
|
}
|
|
|
|
/// isSchedulingBoundary - Test if the given instruction should be
|
|
/// considered a scheduling boundary. This primarily includes labels
|
|
/// and terminators.
|
|
bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const{
|
|
// Terminators and labels can't be scheduled around.
|
|
if (MI->isTerminator() || MI->isLabel())
|
|
return true;
|
|
|
|
// Don't attempt to schedule around any instruction that defines
|
|
// a stack-oriented pointer, as it's unlikely to be profitable. This
|
|
// saves compile time, because it doesn't require every single
|
|
// stack slot reference to depend on the instruction that does the
|
|
// modification.
|
|
const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
|
|
if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Provide a global flag for disabling the PreRA hazard recognizer that targets
|
|
// may choose to honor.
|
|
bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
|
|
return !DisableHazardRecognizer;
|
|
}
|
|
|
|
// Default implementation of CreateTargetRAHazardRecognizer.
|
|
ScheduleHazardRecognizer *TargetInstrInfoImpl::
|
|
CreateTargetHazardRecognizer(const TargetMachine *TM,
|
|
const ScheduleDAG *DAG) const {
|
|
// Dummy hazard recognizer allows all instructions to issue.
|
|
return new ScheduleHazardRecognizer();
|
|
}
|
|
|
|
// Default implementation of CreateTargetPostRAHazardRecognizer.
|
|
ScheduleHazardRecognizer *TargetInstrInfoImpl::
|
|
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAG *DAG) const {
|
|
return (ScheduleHazardRecognizer *)
|
|
new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
|
|
}
|
|
|
|
int
|
|
TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData,
|
|
SDNode *DefNode, unsigned DefIdx,
|
|
SDNode *UseNode, unsigned UseIdx) const {
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return -1;
|
|
|
|
if (!DefNode->isMachineOpcode())
|
|
return -1;
|
|
|
|
unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
|
|
if (!UseNode->isMachineOpcode())
|
|
return ItinData->getOperandCycle(DefClass, DefIdx);
|
|
unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
|
|
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
|
|
}
|
|
|
|
int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData,
|
|
SDNode *N) const {
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return 1;
|
|
|
|
if (!N->isMachineOpcode())
|
|
return 1;
|
|
|
|
return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
|
|
}
|
|
|