llvm/test/CodeGen/WebAssembly/comparisons_f32.ll
Dan Gohman 3d5f22734f [WebAssembly] Add -m:e to the target triple.
This enables ELF-style name mangling, which primarily means using ".L" for
private symbols.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257020 91177308-0d34-0410-b5e6-96231b3b80d8
2016-01-07 03:19:23 +00:00

182 lines
5.8 KiB
LLVM

; RUN: llc < %s -asm-verbose=false | FileCheck %s
; Test that basic 32-bit floating-point comparison operations assemble as
; expected.
target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128"
target triple = "wasm32-unknown-unknown"
; CHECK-LABEL: ord_f32:
; CHECK-NEXT: .param f32, f32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: f32.eq $push[[NUM0:[0-9]+]]=, $0, $0{{$}}
; CHECK-NEXT: f32.eq $push[[NUM1:[0-9]+]]=, $1, $1{{$}}
; CHECK-NEXT: i32.and $push[[NUM2:[0-9]+]]=, $pop[[NUM0]], $pop[[NUM1]]{{$}}
; CHECK-NEXT: return $pop[[NUM2]]{{$}}
define i32 @ord_f32(float %x, float %y) {
%a = fcmp ord float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: uno_f32:
; CHECK-NEXT: .param f32, f32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: f32.ne $push[[NUM0:[0-9]+]]=, $0, $0{{$}}
; CHECK-NEXT: f32.ne $push[[NUM1:[0-9]+]]=, $1, $1{{$}}
; CHECK-NEXT: i32.or $push[[NUM2:[0-9]+]]=, $pop[[NUM0]], $pop[[NUM1]]{{$}}
; CHECK-NEXT: return $pop[[NUM2]]{{$}}
define i32 @uno_f32(float %x, float %y) {
%a = fcmp uno float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: oeq_f32:
; CHECK-NEXT: .param f32, f32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: f32.eq $push[[NUM:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @oeq_f32(float %x, float %y) {
%a = fcmp oeq float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: une_f32:
; CHECK: f32.ne $push[[NUM:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @une_f32(float %x, float %y) {
%a = fcmp une float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: olt_f32:
; CHECK: f32.lt $push[[NUM:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @olt_f32(float %x, float %y) {
%a = fcmp olt float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: ole_f32:
; CHECK: f32.le $push[[NUM:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @ole_f32(float %x, float %y) {
%a = fcmp ole float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: ogt_f32:
; CHECK: f32.gt $push[[NUM:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @ogt_f32(float %x, float %y) {
%a = fcmp ogt float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: oge_f32:
; CHECK: f32.ge $push[[NUM:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @oge_f32(float %x, float %y) {
%a = fcmp oge float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; Expanded comparisons, which also check for NaN.
; CHECK-LABEL: ueq_f32:
; CHECK-NEXT: .param f32, f32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: f32.eq $push[[NUM0:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: f32.ne $push[[NUM1:[0-9]+]]=, $0, $0{{$}}
; CHECK-NEXT: f32.ne $push[[NUM2:[0-9]+]]=, $1, $1{{$}}
; CHECK-NEXT: i32.or $push[[NUM3:[0-9]+]]=, $pop[[NUM1]], $pop[[NUM2]]{{$}}
; CHECK-NEXT: i32.or $push[[NUM4:[0-9]+]]=, $pop[[NUM0]], $pop[[NUM3]]{{$}}
; CHECK-NEXT: return $pop[[NUM4]]{{$}}
define i32 @ueq_f32(float %x, float %y) {
%a = fcmp ueq float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: one_f32:
; CHECK-NEXT: .param f32, f32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: f32.ne $push[[NUM0:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: f32.eq $push[[NUM1:[0-9]+]]=, $0, $0{{$}}
; CHECK-NEXT: f32.eq $push[[NUM2:[0-9]+]]=, $1, $1{{$}}
; CHECK-NEXT: i32.and $push[[NUM3:[0-9]+]]=, $pop[[NUM1]], $pop[[NUM2]]{{$}}
; CHECK-NEXT: i32.and $push[[NUM4:[0-9]+]]=, $pop[[NUM0]], $pop[[NUM3]]{{$}}
; CHECK-NEXT: return $pop[[NUM4]]
define i32 @one_f32(float %x, float %y) {
%a = fcmp one float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: ult_f32:
; CHECK-NEXT: .param f32, f32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: f32.lt $push[[NUM0:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: f32.ne $push[[NUM1:[0-9]+]]=, $0, $0{{$}}
; CHECK-NEXT: f32.ne $push[[NUM2:[0-9]+]]=, $1, $1{{$}}
; CHECK-NEXT: i32.or $push[[NUM3:[0-9]+]]=, $pop[[NUM1]], $pop[[NUM2]]{{$}}
; CHECK-NEXT: i32.or $push[[NUM4:[0-9]+]]=, $pop[[NUM0]], $pop[[NUM3]]{{$}}
; CHECK-NEXT: return $pop[[NUM4]]{{$}}
define i32 @ult_f32(float %x, float %y) {
%a = fcmp ult float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: ule_f32:
; CHECK-NEXT: .param f32, f32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: f32.le $push[[NUM0:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: f32.ne $push[[NUM1:[0-9]+]]=, $0, $0{{$}}
; CHECK-NEXT: f32.ne $push[[NUM2:[0-9]+]]=, $1, $1{{$}}
; CHECK-NEXT: i32.or $push[[NUM3:[0-9]+]]=, $pop[[NUM1]], $pop[[NUM2]]{{$}}
; CHECK-NEXT: i32.or $push[[NUM4:[0-9]+]]=, $pop[[NUM0]], $pop[[NUM3]]{{$}}
; CHECK-NEXT: return $pop[[NUM4]]{{$}}
define i32 @ule_f32(float %x, float %y) {
%a = fcmp ule float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: ugt_f32:
; CHECK-NEXT: .param f32, f32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: f32.gt $push[[NUM0:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: f32.ne $push[[NUM1:[0-9]+]]=, $0, $0{{$}}
; CHECK-NEXT: f32.ne $push[[NUM2:[0-9]+]]=, $1, $1{{$}}
; CHECK-NEXT: i32.or $push[[NUM3:[0-9]+]]=, $pop[[NUM1]], $pop[[NUM2]]{{$}}
; CHECK-NEXT: i32.or $push[[NUM4:[0-9]+]]=, $pop[[NUM0]], $pop[[NUM3]]{{$}}
; CHECK-NEXT: return $pop[[NUM4]]{{$}}
define i32 @ugt_f32(float %x, float %y) {
%a = fcmp ugt float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}
; CHECK-LABEL: uge_f32:
; CHECK-NEXT: .param f32, f32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: f32.ge $push[[NUM0:[0-9]+]]=, $0, $1{{$}}
; CHECK-NEXT: f32.ne $push[[NUM1:[0-9]+]]=, $0, $0{{$}}
; CHECK-NEXT: f32.ne $push[[NUM2:[0-9]+]]=, $1, $1{{$}}
; CHECK-NEXT: i32.or $push[[NUM3:[0-9]+]]=, $pop[[NUM1]], $pop[[NUM2]]{{$}}
; CHECK-NEXT: i32.or $push[[NUM4:[0-9]+]]=, $pop[[NUM0]], $pop[[NUM3]]{{$}}
; CHECK-NEXT: return $pop[[NUM4]]{{$}}
define i32 @uge_f32(float %x, float %y) {
%a = fcmp uge float %x, %y
%b = zext i1 %a to i32
ret i32 %b
}