llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
2016-07-29 18:11:21 +00:00

291 lines
9.8 KiB
C++

//===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the IRTranslator class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Target/TargetLowering.h"
#define DEBUG_TYPE "irtranslator"
using namespace llvm;
char IRTranslator::ID = 0;
INITIALIZE_PASS(IRTranslator, "irtranslator", "IRTranslator LLVM IR -> MI",
false, false)
IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) {
initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
}
unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
unsigned &ValReg = ValToVReg[&Val];
// Check if this is the first time we see Val.
if (!ValReg) {
// Fill ValRegsSequence with the sequence of registers
// we need to concat together to produce the value.
assert(Val.getType()->isSized() &&
"Don't know how to create an empty vreg");
assert(!Val.getType()->isAggregateType() && "Not yet implemented");
unsigned Size = DL->getTypeSizeInBits(Val.getType());
unsigned VReg = MRI->createGenericVirtualRegister(Size);
ValReg = VReg;
assert(!isa<Constant>(Val) && "Not yet implemented");
}
return ValReg;
}
unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
unsigned Alignment = 0;
Type *ValTy = nullptr;
if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
Alignment = SI->getAlignment();
ValTy = SI->getValueOperand()->getType();
} else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
Alignment = LI->getAlignment();
ValTy = LI->getType();
} else
llvm_unreachable("unhandled memory instruction");
return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
}
MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) {
MachineBasicBlock *&MBB = BBToMBB[&BB];
if (!MBB) {
MachineFunction &MF = MIRBuilder.getMF();
MBB = MF.CreateMachineBasicBlock();
MF.push_back(MBB);
}
return *MBB;
}
bool IRTranslator::translateBinaryOp(unsigned Opcode,
const BinaryOperator &Inst) {
// FIXME: handle signed/unsigned wrapping flags.
// Get or create a virtual register for each value.
// Unless the value is a Constant => loadimm cst?
// or inline constant each time?
// Creation of a virtual register needs to have a size.
unsigned Op0 = getOrCreateVReg(*Inst.getOperand(0));
unsigned Op1 = getOrCreateVReg(*Inst.getOperand(1));
unsigned Res = getOrCreateVReg(Inst);
MIRBuilder.buildInstr(Opcode, LLT{*Inst.getType()})
.addDef(Res)
.addUse(Op0)
.addUse(Op1);
return true;
}
bool IRTranslator::translateReturn(const ReturnInst &RI) {
const Value *Ret = RI.getReturnValue();
// The target may mess up with the insertion point, but
// this is not important as a return is the last instruction
// of the block anyway.
return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
}
bool IRTranslator::translateBr(const BranchInst &BrInst) {
unsigned Succ = 0;
if (!BrInst.isUnconditional()) {
// We want a G_BRCOND to the true BB followed by an unconditional branch.
unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt);
MIRBuilder.buildBrCond(LLT{*BrInst.getCondition()->getType()}, Tst, TrueBB);
}
const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt);
MIRBuilder.buildBr(TgtBB);
// Link successors.
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
for (const BasicBlock *Succ : BrInst.successors())
CurBB.addSuccessor(&getOrCreateBB(*Succ));
return true;
}
bool IRTranslator::translateLoad(const LoadInst &LI) {
assert(LI.isSimple() && "only simple loads are supported at the moment");
MachineFunction &MF = MIRBuilder.getMF();
unsigned Res = getOrCreateVReg(LI);
unsigned Addr = getOrCreateVReg(*LI.getPointerOperand());
LLT VTy{*LI.getType()}, PTy{*LI.getPointerOperand()->getType()};
MIRBuilder.buildLoad(
VTy, PTy, Res, Addr,
*MF.getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()),
MachineMemOperand::MOLoad,
VTy.getSizeInBits() / 8, getMemOpAlignment(LI)));
return true;
}
bool IRTranslator::translateStore(const StoreInst &SI) {
assert(SI.isSimple() && "only simple loads are supported at the moment");
MachineFunction &MF = MIRBuilder.getMF();
unsigned Val = getOrCreateVReg(*SI.getValueOperand());
unsigned Addr = getOrCreateVReg(*SI.getPointerOperand());
LLT VTy{*SI.getValueOperand()->getType()},
PTy{*SI.getPointerOperand()->getType()};
MIRBuilder.buildStore(
VTy, PTy, Val, Addr,
*MF.getMachineMemOperand(MachinePointerInfo(SI.getPointerOperand()),
MachineMemOperand::MOStore,
VTy.getSizeInBits() / 8, getMemOpAlignment(SI)));
return true;
}
bool IRTranslator::translateBitCast(const CastInst &CI) {
if (LLT{*CI.getDestTy()} == LLT{*CI.getSrcTy()}) {
MIRBuilder.buildCopy(getOrCreateVReg(CI),
getOrCreateVReg(*CI.getOperand(0)));
return true;
}
return translateCast(TargetOpcode::G_BITCAST, CI);
}
bool IRTranslator::translateCast(unsigned Opcode, const CastInst &CI) {
unsigned Op = getOrCreateVReg(*CI.getOperand(0));
unsigned Res = getOrCreateVReg(CI);
MIRBuilder.buildInstr(Opcode, {LLT{*CI.getDestTy()}, LLT{*CI.getSrcTy()}})
.addDef(Res)
.addUse(Op);
return true;
}
bool IRTranslator::translateStaticAlloca(const AllocaInst &AI) {
assert(AI.isStaticAlloca() && "only handle static allocas now");
MachineFunction &MF = MIRBuilder.getMF();
unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
unsigned Size =
ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
// Always allocate at least one byte.
Size = std::max(Size, 1u);
unsigned Alignment = AI.getAlignment();
if (!Alignment)
Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
unsigned Res = getOrCreateVReg(AI);
int FI = MF.getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
MIRBuilder.buildFrameIndex(LLT::pointer(0), Res, FI);
return true;
}
bool IRTranslator::translate(const Instruction &Inst) {
MIRBuilder.setDebugLoc(Inst.getDebugLoc());
switch(Inst.getOpcode()) {
// Arithmetic operations.
case Instruction::Add:
return translateBinaryOp(TargetOpcode::G_ADD, cast<BinaryOperator>(Inst));
case Instruction::Sub:
return translateBinaryOp(TargetOpcode::G_SUB, cast<BinaryOperator>(Inst));
// Bitwise operations.
case Instruction::And:
return translateBinaryOp(TargetOpcode::G_AND, cast<BinaryOperator>(Inst));
case Instruction::Or:
return translateBinaryOp(TargetOpcode::G_OR, cast<BinaryOperator>(Inst));
case Instruction::Xor:
return translateBinaryOp(TargetOpcode::G_XOR, cast<BinaryOperator>(Inst));
// Branch operations.
case Instruction::Br:
return translateBr(cast<BranchInst>(Inst));
case Instruction::Ret:
return translateReturn(cast<ReturnInst>(Inst));
// Casts
case Instruction::BitCast:
return translateBitCast(cast<CastInst>(Inst));
case Instruction::IntToPtr:
return translateCast(TargetOpcode::G_INTTOPTR, cast<CastInst>(Inst));
case Instruction::PtrToInt:
return translateCast(TargetOpcode::G_PTRTOINT, cast<CastInst>(Inst));
// Memory ops.
case Instruction::Load:
return translateLoad(cast<LoadInst>(Inst));
case Instruction::Store:
return translateStore(cast<StoreInst>(Inst));
case Instruction::Alloca:
return translateStaticAlloca(cast<AllocaInst>(Inst));
default:
llvm_unreachable("Opcode not supported");
}
}
void IRTranslator::finalize() {
// Release the memory used by the different maps we
// needed during the translation.
ValToVReg.clear();
Constants.clear();
}
bool IRTranslator::runOnMachineFunction(MachineFunction &MF) {
const Function &F = *MF.getFunction();
if (F.empty())
return false;
CLI = MF.getSubtarget().getCallLowering();
MIRBuilder.setMF(MF);
MRI = &MF.getRegInfo();
DL = &F.getParent()->getDataLayout();
// Setup the arguments.
MachineBasicBlock &MBB = getOrCreateBB(F.front());
MIRBuilder.setMBB(MBB);
SmallVector<unsigned, 8> VRegArgs;
for (const Argument &Arg: F.args())
VRegArgs.push_back(getOrCreateVReg(Arg));
bool Succeeded =
CLI->lowerFormalArguments(MIRBuilder, F.getArgumentList(), VRegArgs);
if (!Succeeded)
report_fatal_error("Unable to lower arguments");
for (const BasicBlock &BB: F) {
MachineBasicBlock &MBB = getOrCreateBB(BB);
// Set the insertion point of all the following translations to
// the end of this basic block.
MIRBuilder.setMBB(MBB);
for (const Instruction &Inst: BB) {
bool Succeeded = translate(Inst);
if (!Succeeded) {
DEBUG(dbgs() << "Cannot translate: " << Inst << '\n');
report_fatal_error("Unable to translate instruction");
}
}
}
// Now that the MachineFrameInfo has been configured, no further changes to
// the reserved registers are possible.
MRI->freezeReservedRegs(MF);
return false;
}