mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-07 12:30:44 +00:00
fdf7354745
Summary: This patch improves thinlto importer by importing 3x larger functions that are called from hot block. I compared performance with the trunk on spec, and there were about 2% on povray and 3.33% on milc. These results seems to be consistant and match the results Teresa got with her simple heuristic. Some benchmarks got slower but I think they are just noisy (mcf, xalancbmki, omnetpp)- running the benchmarks again with more iterations to confirm. Geomean of all benchmarks including the noisy ones were about +0.02%. I see much better improvement on google branch with Easwaran patch for pgo callsite inlining (the inliner actually inline those big functions) Over all I see +0.5% improvement, and I get +8.65% on povray. So I guess we will see much bigger change when Easwaran patch will land (it depends on new pass manager), but it is still worth putting this to trunk before it. Implementation details changes: - Removed CallsiteCount. - ProfileCount got replaced by Hotness - hot-import-multiplier is set to 3.0 for now, didn't have time to tune it up, but I see that we get most of the interesting functions with 3, so there is no much performance difference with higher, and binary size doesn't grow as much as with 10.0. Reviewers: eraman, mehdi_amini, tejohnson Subscribers: mehdi_amini, llvm-commits Differential Revision: https://reviews.llvm.org/D24638 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282437 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
AliasAnalysis.cpp | ||
AliasAnalysisEvaluator.cpp | ||
AliasAnalysisSummary.cpp | ||
AliasAnalysisSummary.h | ||
AliasSetTracker.cpp | ||
Analysis.cpp | ||
AssumptionCache.cpp | ||
BasicAliasAnalysis.cpp | ||
BlockFrequencyInfo.cpp | ||
BlockFrequencyInfoImpl.cpp | ||
BranchProbabilityInfo.cpp | ||
CallGraph.cpp | ||
CallGraphSCCPass.cpp | ||
CallPrinter.cpp | ||
CaptureTracking.cpp | ||
CFG.cpp | ||
CFGPrinter.cpp | ||
CFLAndersAliasAnalysis.cpp | ||
CFLGraph.h | ||
CFLSteensAliasAnalysis.cpp | ||
CGSCCPassManager.cpp | ||
CMakeLists.txt | ||
CodeMetrics.cpp | ||
ConstantFolding.cpp | ||
CostModel.cpp | ||
Delinearization.cpp | ||
DemandedBits.cpp | ||
DependenceAnalysis.cpp | ||
DivergenceAnalysis.cpp | ||
DominanceFrontier.cpp | ||
DomPrinter.cpp | ||
EHPersonalities.cpp | ||
GlobalsModRef.cpp | ||
IndirectCallPromotionAnalysis.cpp | ||
InlineCost.cpp | ||
InstCount.cpp | ||
InstructionSimplify.cpp | ||
Interval.cpp | ||
IntervalPartition.cpp | ||
IteratedDominanceFrontier.cpp | ||
IVUsers.cpp | ||
LazyBlockFrequencyInfo.cpp | ||
LazyBranchProbabilityInfo.cpp | ||
LazyCallGraph.cpp | ||
LazyValueInfo.cpp | ||
Lint.cpp | ||
LLVMBuild.txt | ||
Loads.cpp | ||
LoopAccessAnalysis.cpp | ||
LoopInfo.cpp | ||
LoopPass.cpp | ||
LoopPassManager.cpp | ||
LoopUnrollAnalyzer.cpp | ||
MemDepPrinter.cpp | ||
MemDerefPrinter.cpp | ||
MemoryBuiltins.cpp | ||
MemoryDependenceAnalysis.cpp | ||
MemoryLocation.cpp | ||
ModuleDebugInfoPrinter.cpp | ||
ModuleSummaryAnalysis.cpp | ||
ObjCARCAliasAnalysis.cpp | ||
ObjCARCAnalysisUtils.cpp | ||
ObjCARCInstKind.cpp | ||
OptimizationDiagnosticInfo.cpp | ||
OrderedBasicBlock.cpp | ||
PHITransAddr.cpp | ||
PostDominators.cpp | ||
ProfileSummaryInfo.cpp | ||
PtrUseVisitor.cpp | ||
README.txt | ||
RegionInfo.cpp | ||
RegionPass.cpp | ||
RegionPrinter.cpp | ||
ScalarEvolution.cpp | ||
ScalarEvolutionAliasAnalysis.cpp | ||
ScalarEvolutionExpander.cpp | ||
ScalarEvolutionNormalization.cpp | ||
ScopedNoAliasAA.cpp | ||
SparsePropagation.cpp | ||
StratifiedSets.h | ||
TargetLibraryInfo.cpp | ||
TargetTransformInfo.cpp | ||
Trace.cpp | ||
TypeBasedAliasAnalysis.cpp | ||
TypeMetadataUtils.cpp | ||
ValueTracking.cpp | ||
VectorUtils.cpp |
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//