mirror of
https://github.com/darlinghq/darling-gdb.git
synced 2025-01-01 17:28:43 +00:00
aba193a514
I found the documentation lacking in many places, so I tried filling in a lot of holes that I personally fell into. Signed-off-by: Mike Frysinger <vapier@gentoo.org>
505 lines
17 KiB
Plaintext
505 lines
17 KiB
Plaintext
This is a loose collection of notes for people hacking on simulators.
|
||
If this document gets big enough it can be prettied up then.
|
||
|
||
Contents
|
||
|
||
- The "common" directory
|
||
- Common Makefile Support
|
||
- TAGS support
|
||
- Generating "configure" files
|
||
- tconfig.in
|
||
- C Language Assumptions
|
||
- "dump" commands under gdb
|
||
|
||
The "common" directory
|
||
======================
|
||
|
||
The common directory contains:
|
||
|
||
- common documentation files (e.g. run.1, and maybe in time .texi files)
|
||
- common source files (e.g. run.c)
|
||
- common Makefile fragment and configury (e.g. Make-common.in, aclocal.m4).
|
||
|
||
In addition "common" contains portions of the system call support
|
||
(e.g. callback.c, nltvals.def).
|
||
|
||
Even though no files are built in this directory, it is still configured
|
||
so support for regenerating nltvals.def is present.
|
||
|
||
Common Makefile Support
|
||
=======================
|
||
|
||
A common configuration framework is available for simulators that want
|
||
to use it. The common framework exists to remove a lot of duplication
|
||
in configure.in and Makefile.in, and it also provides a foundation for
|
||
enhancing the simulators uniformly (e.g. the more they share in common
|
||
the easier a feature added to one is added to all).
|
||
|
||
The configure.in of a simulator using the common framework should look like:
|
||
|
||
--- snip ---
|
||
dnl Process this file with autoconf to produce a configure script.
|
||
sinclude(../common/aclocal.m4)
|
||
AC_PREREQ(2.5)dnl
|
||
AC_INIT(Makefile.in)
|
||
|
||
SIM_AC_COMMON
|
||
|
||
... target specific additions ...
|
||
|
||
SIM_AC_OUTPUT
|
||
--- snip ---
|
||
|
||
SIM_AC_COMMON:
|
||
|
||
- invokes the autoconf macros most often used by the simulators
|
||
- defines --enable/--with options usable by all simulators
|
||
- initializes sim_link_files/sim_link_links as the set of symbolic links
|
||
to set up
|
||
|
||
SIM_AC_OUTPUT:
|
||
|
||
- creates the symbolic links defined in sim_link_{files,links}
|
||
- creates config.h
|
||
- creates the Makefile
|
||
|
||
The Makefile.in of a simulator using the common framework should look like:
|
||
|
||
--- snip ---
|
||
# Makefile for blah ...
|
||
# Copyright blah ...
|
||
|
||
## COMMON_PRE_CONFIG_FRAG
|
||
|
||
# These variables are given default values in COMMON_PRE_CONFIG_FRAG.
|
||
# We override the ones we need to here.
|
||
# Not all of these need to be mentioned, only the necessary ones.
|
||
# In fact it is better to *not* mention ones if the value is the default.
|
||
|
||
# List of object files, less common parts.
|
||
SIM_OBJS =
|
||
# List of extra dependencies.
|
||
# Generally this consists of simulator specific files included by sim-main.h.
|
||
SIM_EXTRA_DEPS =
|
||
# List of flags to always pass to $(CC).
|
||
SIM_EXTRA_CFLAGS =
|
||
# List of extra libraries to link with.
|
||
SIM_EXTRA_LIBS =
|
||
# List of extra program dependencies.
|
||
SIM_EXTRA_LIBDEPS =
|
||
# List of main object files for `run'.
|
||
SIM_RUN_OBJS = run.o
|
||
# Dependency of `all' to build any extra files.
|
||
SIM_EXTRA_ALL =
|
||
# Dependency of `install' to install any extra files.
|
||
SIM_EXTRA_INSTALL =
|
||
# Dependency of `clean' to clean any extra files.
|
||
SIM_EXTRA_CLEAN =
|
||
|
||
## COMMON_POST_CONFIG_FRAG
|
||
|
||
# Rules need to build $(SIM_OBJS), plus whatever else the target wants.
|
||
|
||
... target specific rules ...
|
||
--- snip ---
|
||
|
||
COMMON_{PRE,POST}_CONFIG_FRAG are markers for SIM_AC_OUTPUT to tell it
|
||
where to insert the two pieces of common/Make-common.in.
|
||
The resulting Makefile is created by doing autoconf substitions on
|
||
both the target's Makefile.in and Make-common.in, and inserting
|
||
the two pieces of Make-common.in into the target's Makefile.in at
|
||
COMMON_{PRE,POST}_CONFIG_FRAG.
|
||
|
||
Note that SIM_EXTRA_{INSTALL,CLEAN} could be removed and "::" targets
|
||
could be used instead. However, it's not clear yet whether "::" targets
|
||
are portable enough.
|
||
|
||
TAGS support
|
||
============
|
||
|
||
Many files generate program symbols at compile time.
|
||
Such symbols can't be found with grep nor do they normally appear in
|
||
the TAGS file. To get around this, source files can add the comment
|
||
|
||
/* TAGS: foo1 foo2 */
|
||
|
||
where foo1, foo2 are program symbols. Symbols found in such comments
|
||
are greppable and appear in the TAGS file.
|
||
|
||
Generating "configure" files
|
||
============================
|
||
|
||
For targets using the common framework, "configure" can be generated
|
||
by running `autoconf'.
|
||
|
||
To regenerate the configure files for all targets using the common framework:
|
||
|
||
$ cd devo/sim
|
||
$ make -f Makefile.in SHELL=/bin/sh autoconf-common
|
||
|
||
To add a change-log entry to the ChangeLog file for each updated
|
||
directory (WARNING - check the modified new-ChangeLog files before
|
||
renaming):
|
||
|
||
$ make -f Makefile.in SHELL=/bin/sh autoconf-changelog
|
||
$ more */new-ChangeLog
|
||
$ make -f Makefile.in SHELL=/bin/sh autoconf-install
|
||
|
||
In a similar vein, both the configure and config.in files can be
|
||
updated using the sequence:
|
||
|
||
$ cd devo/sim
|
||
$ make -f Makefile.in SHELL=/bin/sh autoheader-common
|
||
$ make -f Makefile.in SHELL=/bin/sh autoheader-changelog
|
||
$ more */new-ChangeLog
|
||
$ make -f Makefile.in SHELL=/bin/sh autoheader-install
|
||
|
||
To add the entries to an alternative ChangeLog file, use:
|
||
|
||
$ make ChangeLog=MyChangeLog ....
|
||
|
||
|
||
tconfig.in
|
||
==========
|
||
|
||
File tconfig.in defines one or more target configuration macros
|
||
(e.g. a tm.h file). There are very few that need defining.
|
||
For a list of all of them, see common/tconfig.in.
|
||
It contains them all, commented out.
|
||
The intent is that a new port can just copy this file and
|
||
define the ones it needs.
|
||
|
||
C Language Assumptions
|
||
======================
|
||
|
||
The programmer may assume that the simulator is being built using an
|
||
ANSI C compiler that supports a 64 bit data type. Consequently:
|
||
|
||
o prototypes can be used (although using
|
||
PARAMS() and K&R declarations wouldn't
|
||
go astray).
|
||
|
||
o If sim-types.h is included, the two
|
||
types signed64 and unsigned64 are
|
||
available.
|
||
|
||
o The type `unsigned' is valid.
|
||
|
||
However, the user should be aware of the following:
|
||
|
||
o GCC's `<number>LL' is NOT acceptable.
|
||
Microsoft-C doesn't reconize it.
|
||
|
||
o MSC's `<number>i64' is NOT acceptable.
|
||
GCC doesn't reconize it.
|
||
|
||
o GCC's `long long' MSC's `_int64' can
|
||
NOT be used to define 64 bit integer data
|
||
types.
|
||
|
||
o An empty array (eg int a[0]) is not valid.
|
||
|
||
When building with GCC it is effectivly a requirement that
|
||
--enable-build-warnings=,-Werror be specified during configuration.
|
||
|
||
"dump" commands under gdb
|
||
=========================
|
||
|
||
gdbinit.in contains the following
|
||
|
||
define dump
|
||
set sim_debug_dump ()
|
||
end
|
||
|
||
Simulators that define the sim_debug_dump function can then have their
|
||
internal state pretty printed from gdb.
|
||
|
||
FIXME: This can obviously be made more elaborate. As needed it will be.
|
||
|
||
Rebuilding nltvals.def
|
||
======================
|
||
|
||
Checkout a copy of the SIM and LIBGLOSS modules (Unless you've already
|
||
got one to hand):
|
||
|
||
$ mkdir /tmp/$$
|
||
$ cd /tmp/$$
|
||
$ cvs checkout sim-no-testsuite libgloss-no-testsuite newlib-no-testsuite
|
||
|
||
Configure things for an arbitrary simulator target (I've d10v for
|
||
convenience):
|
||
|
||
$ mkdir /tmp/$$/build
|
||
$ cd /tmp/$$/build
|
||
$ /tmp/$$/devo/configure --target=d10v-elf
|
||
|
||
In the sim/common directory rebuild the headers:
|
||
|
||
$ cd sim/common
|
||
$ make headers
|
||
|
||
To add a new target:
|
||
|
||
devo/sim/common/gennltvals.sh
|
||
|
||
Add your new processor target (you'll need to grub
|
||
around to find where your syscall.h lives).
|
||
|
||
devo/sim/<processor>/Makefile.in
|
||
|
||
Add the definition:
|
||
|
||
``NL_TARGET = -DNL_TARGET_d10v''
|
||
|
||
just before the line COMMON_POST_CONFIG_FRAG.
|
||
|
||
devo/sim/<processor>/*.[ch]
|
||
|
||
Include targ-vals.h instead of syscall.h.
|
||
|
||
Tracing
|
||
=======
|
||
|
||
For ports based on CGEN, tracing instrumentation should largely be for free,
|
||
so we will cover the basic non-CGEN setup here. The assumption is that your
|
||
target is using the common autoconf macros and so the build system already
|
||
includes the sim-trace configure flag.
|
||
|
||
The full tracing API is covered in sim-trace.h, so this section is an overview.
|
||
|
||
Before calling any trace function, you should make a call to the trace_prefix()
|
||
function. This is usually done in the main sim_engine_run() loop before
|
||
simulating the next instruction. You should make this call before every
|
||
simulated insn. You can probably copy & paste this:
|
||
if (TRACE_ANY_P (cpu))
|
||
trace_prefix (sd, cpu, NULL_CIA, oldpc, TRACE_LINENUM_P (cpu), NULL, 0, "");
|
||
|
||
You will then need to instrument your simulator code with calls to the
|
||
trace_generic() function with the appropriate trace index. Typically, this
|
||
will take a form similar to the above snippet. So to trace instructions, you
|
||
would use something like:
|
||
if (TRACE_INSN_P (cpu))
|
||
trace_generic (sd, cpu, TRACE_INSN_IDX, "NOP;");
|
||
|
||
The exact output format is up to you. See the trace index enum in sim-trace.h
|
||
to see the different tracing info available.
|
||
|
||
To utilize the tracing features at runtime, simply use the --trace-xxx flags.
|
||
run --trace-insn ./some-program
|
||
|
||
Profiling
|
||
=========
|
||
|
||
Similar to the tracing section, this is merely an overview for non-CGEN based
|
||
ports. The full API may be found in sim-profile.h. Its API is also similar
|
||
to the tracing API.
|
||
|
||
Note that unlike the tracing command line options, in addition to the profile
|
||
flags, you have to use the --verbose option to view the summary report after
|
||
execution. Tracing output is displayed on the fly, but the profile output is
|
||
only summarized.
|
||
|
||
To profile core accesses (such as data reads/writes and insn fetches), add
|
||
calls to PROFILE_COUNT_CORE() to your read/write functions. So in your data
|
||
fetch function, you'd use something like:
|
||
PROFILE_COUNT_CORE (cpu, target_addr, size_in_bytes, map_read);
|
||
Then in your data write function:
|
||
PROFILE_COUNT_CORE (cpu, target_addr, size_in_bytes, map_write);
|
||
And in your insn fetcher:
|
||
PROFILE_COUNT_CORE (cpu, target_addr, size_in_bytes, map_exec);
|
||
|
||
To use the PC profiling code, you simply have to tell the system where to find
|
||
your simulator's PC and its size. So in your sim_open() function:
|
||
STATE_WATCHPOINTS (sd)->pc = address_of_cpu0_pc;
|
||
STATE_WATCHPOINTS (sd)->sizeof_pc = number_of_bytes_for_pc_storage;
|
||
In a typical 32bit system, the sizeof_pc will be 4 bytes.
|
||
|
||
To profile branches, in every location where a branch insn is executed, call
|
||
one of the related helpers:
|
||
PROFILE_BRANCH_TAKEN (cpu);
|
||
PROFILE_BRANCH_UNTAKEN (cpu);
|
||
If you have stall information, you can utilize the other helpers too.
|
||
|
||
Environment Simulation
|
||
======================
|
||
|
||
The simplest simulator doesn't include environment support -- it merely
|
||
simulates the Instruction Set Architecture (ISA). Once you're ready to move
|
||
on to the next level, call the common macro in your configure.ac:
|
||
SIM_AC_OPTION_ENVIRONMENT
|
||
|
||
This will support for the user, virtual, and operating environments. See the
|
||
sim-config.h header for a more detailed description of them. The former are
|
||
pretty straight forward as things like exceptions (making system calls) are
|
||
handled in the simulator. Which is to say, an exception does not trigger an
|
||
exception handler in the simulator target -- that is what the operating env
|
||
is about. See the following userspace section for more information.
|
||
|
||
Userspace System Calls
|
||
======================
|
||
|
||
By default, the libgloss userspace is simulated. That means the system call
|
||
numbers and calling convention matches that of libgloss. Simulating other
|
||
userspaces (such as Linux) is pretty straightforward, but let's first focus
|
||
on the basics. The basic API is covered in include/gdb/callback.h.
|
||
|
||
When an instruction is simulated that invokes the system call method (such as
|
||
forcing a hardware trap or exception), your simulator code should set up the
|
||
CB_SYSCALL data structure before calling the common cb_syscall() function.
|
||
For example:
|
||
static int
|
||
syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
|
||
unsigned long taddr, char *buf, int bytes)
|
||
{
|
||
SIM_DESC sd = (SIM_DESC) sc->p1;
|
||
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
|
||
return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
|
||
}
|
||
static int
|
||
syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
|
||
unsigned long taddr, const char *buf, int bytes)
|
||
{
|
||
SIM_DESC sd = (SIM_DESC) sc->p1;
|
||
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
|
||
return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
|
||
}
|
||
void target_sim_syscall (SIM_CPU *cpu)
|
||
{
|
||
SIM_DESC sd = CPU_STATE (cpu);
|
||
host_callback *cb = STATE_CALLBACK (sd);
|
||
CB_SYSCALL sc;
|
||
|
||
CB_SYSCALL_INIT (&sc);
|
||
|
||
sc.func = <fetch system call number>;
|
||
sc.arg1 = <fetch first system call argument>;
|
||
sc.arg2 = <fetch second system call argument>;
|
||
sc.arg3 = <fetch third system call argument>;
|
||
sc.arg4 = <fetch fourth system call argument>;
|
||
sc.p1 = (PTR) sd;
|
||
sc.p2 = (PTR) cpu;
|
||
sc.read_mem = syscall_read_mem;
|
||
sc.write_mem = syscall_write_mem;
|
||
|
||
cb_syscall (cb, &sc);
|
||
|
||
<store system call result from sc.result>;
|
||
<store system call error from sc.errcode>;
|
||
}
|
||
Some targets store the result and error code in different places, while others
|
||
only store the error code when the result is an error.
|
||
|
||
Keep in mind that the CB_SYS_xxx defines are normalized values with no real
|
||
meaning with respect to the target. They provide a unique map on the host so
|
||
that it can parse things sanely. For libgloss, the common/nltvals.def file
|
||
creates the target's system call numbers to the CB_SYS_xxx values.
|
||
|
||
To simulate other userspace targets, you really only need to update the maps
|
||
pointers that are part of the callback interface. So create CB_TARGET_DEFS_MAP
|
||
arrays for each set (system calls, errnos, open bits, etc...) and in a place
|
||
you find useful, do something like:
|
||
|
||
...
|
||
static CB_TARGET_DEFS_MAP cb_linux_syscall_map[] = {
|
||
# define TARGET_LINUX_SYS_open 5
|
||
{ CB_SYS_open, TARGET_LINUX_SYS_open },
|
||
...
|
||
{ -1, -1 },
|
||
};
|
||
...
|
||
host_callback *cb = STATE_CALLBACK (sd);
|
||
cb->syscall_map = cb_linux_syscall_map;
|
||
cb->errno_map = cb_linux_errno_map;
|
||
cb->open_map = cb_linux_open_map;
|
||
cb->signal_map = cb_linux_signal_map;
|
||
cb->stat_map = cb_linux_stat_map;
|
||
...
|
||
|
||
Each of these cb_linux_*_map's are manually declared by the arch target.
|
||
|
||
The target_sim_syscall() example above will then work unchanged (ignoring the
|
||
system call convention) because all of the callback functions go through these
|
||
mapping arrays.
|
||
|
||
Events
|
||
======
|
||
|
||
Events are scheduled and executed on behalf of either a cpu or hardware devices.
|
||
The API is pretty much the same and can be found in common/sim-events.h and
|
||
common/hw-events.h.
|
||
|
||
For simulator targets, you really just have to worry about the schedule and
|
||
deschedule functions.
|
||
|
||
Device Trees
|
||
============
|
||
|
||
The device tree model is based on the OpenBoot specification. Since this is
|
||
largely inherited from the psim code, consult the existing psim documentation
|
||
for some in-depth details.
|
||
http://sourceware.org/psim/manual/
|
||
|
||
Hardware Devices
|
||
================
|
||
|
||
The simplest simulator doesn't include hardware device support. Once you're
|
||
ready to move on to the next level, call the common macro in your configure.ac:
|
||
SIM_AC_OPTION_HARDWARE(yes,,devone devtwo devthree)
|
||
|
||
The basic hardware API is documented in common/hw-device.h.
|
||
|
||
Each device has to have a matching file name with a "dv-" prefix. So there has
|
||
to be a dv-devone.c, dv-devtwo.c, and dv-devthree.c files. Further, each file
|
||
has to have a matching hw_descriptor structure. So the dv-devone.c file has to
|
||
have something like:
|
||
const struct hw_descriptor dv_devone_descriptor[] = {
|
||
{"devone", devone_finish,},
|
||
{NULL, NULL},
|
||
};
|
||
|
||
The "devone" string as well as the "devone_finish" function are not hard
|
||
requirements, just common conventions. The structure name is a hard
|
||
requirement.
|
||
|
||
The devone_finish() callback function is used to instantiate this device by
|
||
parsing the corresponding properties in the device tree.
|
||
|
||
Hardware devices typically attach address ranges to themselves. Then when
|
||
accesses to those addresses are made, the hardware will have its callback
|
||
invoked. The exact callback could be a normal I/O read/write access, as
|
||
well as a DMA access. This makes it easy to simulate memory mapped registers.
|
||
|
||
Keep in mind that like a proper device driver, it may be instantiated many
|
||
times over. So any device state it needs to be maintained should be allocated
|
||
during the finish callback and attached to the hardware device via set_hw_data.
|
||
Any hardware functions can access this private data via the hw_data function.
|
||
|
||
Ports (Interrupts / IRQs)
|
||
=========================
|
||
|
||
First, a note on terminology. A "port" is an aspect of a hardware device that
|
||
accepts or generates interrupts. So devices with input ports may be the target
|
||
of an interrupt (accept it), and/or they have output ports so that they may be
|
||
the source of an interrupt (generate it).
|
||
|
||
Each port has a symbolic name and a unique number. These are used to identify
|
||
the port in different contexts. The output port name has no hard relationship
|
||
to the input port name (same for the unique number). The callback that accepts
|
||
the interrupt uses the name/id of its input port, while the generator function
|
||
uses the name/id of its output port.
|
||
|
||
The device tree is used to connect the output port of a device to the input
|
||
port of another device. There are no limits on the number of inputs connected
|
||
to an output, or outputs to an input, or the devices attached to the ports.
|
||
In other words, the input port and output port could be the same device.
|
||
|
||
The basics are:
|
||
- each hardware device declares an array of ports (hw_port_descriptor).
|
||
any mix of input and output ports is allowed.
|
||
- when setting up the device, attach the array (set_hw_ports).
|
||
- if the device accepts interrupts, it will have to attach a port callback
|
||
function (set_hw_port_event)
|
||
- connect ports with the device tree
|
||
- handle incoming interrupts with the callback
|
||
- generate outgoing interrupts with hw_port_event
|