The rcu_read_unlock_special() function relies on in_irq() to exclude
scheduler activity from interrupt level. This fails because exit_irq()
can invoke the scheduler after clearing the preempt_count() bits that
in_irq() uses to determine that it is at interrupt level. This situation
can result in failures as follows:
$task IRQ SoftIRQ
rcu_read_lock()
/* do stuff */
<preempt> |= UNLOCK_BLOCKED
rcu_read_unlock()
--t->rcu_read_lock_nesting
irq_enter();
/* do stuff, don't use RCU */
irq_exit();
sub_preempt_count(IRQ_EXIT_OFFSET);
invoke_softirq()
ttwu();
spin_lock_irq(&pi->lock)
rcu_read_lock();
/* do stuff */
rcu_read_unlock();
rcu_read_unlock_special()
rcu_report_exp_rnp()
ttwu()
spin_lock_irq(&pi->lock) /* deadlock */
rcu_read_unlock_special(t);
Ed can simply trigger this 'easy' because invoke_softirq() immediately
does a ttwu() of ksoftirqd/# instead of doing the in-place softirq stuff
first, but even without that the above happens.
Cure this by also excluding softirqs from the
rcu_read_unlock_special() handler and ensuring the force_irqthreads
ksoftirqd/# wakeup is done from full softirq context.
[ Alternatively, delaying the ->rcu_read_lock_nesting decrement
until after the special handling would make the thing more robust
in the face of interrupts as well. And there is a separate patch
for that. ]
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-and-tested-by: Ed Tomlinson <edt@aei.ca>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Ensure scheduler_ipi() calls irq_{enter,exit} when it does some actual
work. Traditionally we never did any actual work from the resched IPI
and all magic happened in the return from interrupt path.
Now that we do do some work, we need to ensure irq_{enter,exit} are
called so that we don't confuse things.
This affects things like timekeeping, NO_HZ and RCU, basically
everything with a hook in irq_enter/exit.
Explicit examples of things going wrong are:
sched_clock_cpu() -- has a callback when leaving NO_HZ state to take
a new reading from GTOD and TSC. Without this
callback, time is stuck in the past.
RCU -- needs in_irq() to work in order to avoid some nasty deadlocks
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The addition of RCU read-side critical sections within runqueue and
priority-inheritance lock critical sections introduced some deadlock
cycles, for example, involving interrupts from __rcu_read_unlock()
where the interrupt handlers call wake_up(). This situation can cause
the instance of __rcu_read_unlock() invoked from interrupt to do some
of the processing that would otherwise have been carried out by the
task-level instance of __rcu_read_unlock(). When the interrupt-level
instance of __rcu_read_unlock() is called with a scheduler lock held
from interrupt-entry/exit situations where in_irq() returns false,
deadlock can result.
This commit resolves these deadlocks by using negative values of
the per-task ->rcu_read_lock_nesting counter to indicate that an
instance of __rcu_read_unlock() is in flight, which in turn prevents
instances from interrupt handlers from doing any special processing.
This patch is inspired by Steven Rostedt's earlier patch that similarly
made __rcu_read_unlock() guard against interrupt-mediated recursion
(see https://lkml.org/lkml/2011/7/15/326), but this commit refines
Steven's approach to avoid the need for preemption disabling on the
__rcu_read_unlock() fastpath and to also avoid the need for manipulating
a separate per-CPU variable.
This patch avoids need for preempt_disable() by instead using negative
values of the per-task ->rcu_read_lock_nesting counter. Note that nested
rcu_read_lock()/rcu_read_unlock() pairs are still permitted, but they will
never see ->rcu_read_lock_nesting go to zero, and will therefore never
invoke rcu_read_unlock_special(), thus preventing them from seeing the
RCU_READ_UNLOCK_BLOCKED bit should it be set in ->rcu_read_unlock_special.
This patch also adds a check for ->rcu_read_unlock_special being negative
in rcu_check_callbacks(), thus preventing the RCU_READ_UNLOCK_NEED_QS
bit from being set should a scheduling-clock interrupt occur while
__rcu_read_unlock() is exiting from an outermost RCU read-side critical
section.
Of course, __rcu_read_unlock() can be preempted during the time that
->rcu_read_lock_nesting is negative. This could result in the setting
of the RCU_READ_UNLOCK_BLOCKED bit after __rcu_read_unlock() checks it,
and would also result it this task being queued on the corresponding
rcu_node structure's blkd_tasks list. Therefore, some later RCU read-side
critical section would enter rcu_read_unlock_special() to clean up --
which could result in deadlock if that critical section happened to be in
the scheduler where the runqueue or priority-inheritance locks were held.
This situation is dealt with by making rcu_preempt_note_context_switch()
check for negative ->rcu_read_lock_nesting, thus refraining from
queuing the task (and from setting RCU_READ_UNLOCK_BLOCKED) if we are
already exiting from the outermost RCU read-side critical section (in
other words, we really are no longer actually in that RCU read-side
critical section). In addition, rcu_preempt_note_context_switch()
invokes rcu_read_unlock_special() to carry out the cleanup in this case,
which clears out the ->rcu_read_unlock_special bits and dequeues the task
(if necessary), in turn avoiding needless delay of the current RCU grace
period and needless RCU priority boosting.
It is still illegal to call rcu_read_unlock() while holding a scheduler
lock if the prior RCU read-side critical section has ever had either
preemption or irqs enabled. However, the common use case is legal,
namely where then entire RCU read-side critical section executes with
irqs disabled, for example, when the scheduler lock is held across the
entire lifetime of the RCU read-side critical section.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Given some common flag combinations, particularly -Os, gcc will inline
rcu_read_unlock_special() despite its being in an unlikely() clause.
Use noinline to prohibit this misoptimization.
In addition, move the second barrier() in __rcu_read_unlock() so that
it is not on the common-case code path. This will allow the compiler to
generate better code for the common-case path through __rcu_read_unlock().
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
The RCU_BOOST commits for TREE_PREEMPT_RCU introduced an other-task
write to a new RCU_READ_UNLOCK_BOOSTED bit in the task_struct structure's
->rcu_read_unlock_special field, but, as noted by Steven Rostedt, without
correctly synchronizing all accesses to ->rcu_read_unlock_special.
This could result in bits in ->rcu_read_unlock_special being spuriously
set and cleared due to conflicting accesses, which in turn could result
in deadlocks between the rcu_node structure's ->lock and the scheduler's
rq and pi locks. These deadlocks would result from RCU incorrectly
believing that the just-ended RCU read-side critical section had been
preempted and/or boosted. If that RCU read-side critical section was
executed with either rq or pi locks held, RCU's ensuing (incorrect)
calls to the scheduler would cause the scheduler to attempt to once
again acquire the rq and pi locks, resulting in deadlock. More complex
deadlock cycles are also possible, involving multiple rq and pi locks
as well as locks from multiple rcu_node structures.
This commit fixes synchronization by creating ->rcu_boosted field in
task_struct that is accessed and modified only when holding the ->lock
in the rcu_node structure on which the task is queued (on that rcu_node
structure's ->blkd_tasks list). This results in tasks accessing only
their own current->rcu_read_unlock_special fields, making unsynchronized
access once again legal, and keeping the rcu_read_unlock() fastpath free
of atomic instructions and memory barriers.
The reason that the rcu_read_unlock() fastpath does not need to access
the new current->rcu_boosted field is that this new field cannot
be non-zero unless the RCU_READ_UNLOCK_BLOCKED bit is set in the
current->rcu_read_unlock_special field. Therefore, rcu_read_unlock()
need only test current->rcu_read_unlock_special: if that is zero, then
current->rcu_boosted must also be zero.
This bug does not affect TINY_PREEMPT_RCU because this implementation
of RCU accesses current->rcu_read_unlock_special with irqs disabled,
thus preventing races on the !SMP systems that TINY_PREEMPT_RCU runs on.
Maybe-reported-by: Dave Jones <davej@redhat.com>
Maybe-reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
PREEMPT_RCU read-side critical sections blocking an expedited grace
period invoke rcu_report_exp_rnp(). When the last such critical section
has completed, rcu_report_exp_rnp() invokes the scheduler to wake up the
task that invoked synchronize_rcu_expedited() -- needlessly holding the
root rcu_node structure's lock while doing so, thus needlessly providing
a way for RCU and the scheduler to deadlock.
This commit therefore releases the root rcu_node structure's lock before
calling wake_up().
Reported-by: Ed Tomlinson <edt@aei.ca>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Under some rare but real combinations of configuration parameters, RCU
callbacks are posted during early boot that use kernel facilities that
are not yet initialized. Therefore, when these callbacks are invoked,
hard hangs and crashes ensue. This commit therefore prevents RCU
callbacks from being invoked until after the scheduler is fully up and
running, as in after multiple tasks have been spawned.
It might well turn out that a better approach is to identify the specific
RCU callbacks that are causing this problem, but that discussion will
wait until such time as someone really needs an RCU callback to be invoked
(as opposed to merely registered) during early boot.
Reported-by: julie Sullivan <kernelmail.jms@gmail.com>
Reported-by: RKK <kulkarni.ravi4@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: julie Sullivan <kernelmail.jms@gmail.com>
Tested-by: RKK <kulkarni.ravi4@gmail.com>
That file harkens back to the days of the big 2.4 -> 2.6 version jump,
and was based even then on older versions. Some of it is just obsolete,
and Jesper Juhl points out that it talks about kernel versions 2.6 and
should be updated to 3.0.
Remove some obsolete text, and re-phrase some other to not be 2.6-specific.
Reported-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-2.6:
[media] msp3400: fill in v4l2_tuner based on vt->type field
[media] tuner-core.c: don't change type field in g_tuner or g_frequency
[media] cx18/ivtv: fix g_tuner support
[media] tuner-core: power up tuner when called with s_power(1)
[media] v4l2-ioctl.c: check for valid tuner type in S_HW_FREQ_SEEK
[media] tuner-core: simplify the standard fixup
[media] tuner-core/v4l2-subdev: document that the type field has to be filled in
[media] v4l2-subdev.h: remove unused s_mode tuner op
[media] feature-removal-schedule: change in how radio device nodes are handled
[media] bttv: fix s_tuner for radio
[media] pvrusb2: fix g/s_tuner support
[media] v4l2-ioctl.c: prefill tuner type for g_frequency and g/s_tuner
[media] tuner-core: fix tuner_resume: use t->mode instead of t->type
[media] tuner-core: fix s_std and s_tuner
* git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6:
cifs: drop spinlock before calling cifs_put_tlink
cifs: fix expand_dfs_referral
cifs: move bdi_setup_and_register outside of CONFIG_CIFS_DFS_UPCALL
cifs: factor smb_vol allocation out of cifs_setup_volume_info
cifs: have cifs_cleanup_volume_info not take a double pointer
cifs: fix build_unc_path_to_root to account for a prefixpath
cifs: remove bogus call to cifs_cleanup_volume_info
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mjg59/platform-drivers-x86:
hp-wmi: fix use after free
dell-laptop - using buffer without mutex_lock
Revert: "dell-laptop: Toggle the unsupported hardware killswitch"
platform-drivers-x86: set backlight type to BACKLIGHT_PLATFORM
thinkpad-acpi: handle HKEY 0x4010, 0x4011 events
drivers/platform/x86: Fix memory leak
thinkpad-acpi: handle some new HKEY 0x60xx events
acer-wmi: fix bitwise bug when set device state
acer-wmi: Only update rfkill status for associated hotkey events
Since we removed sti()/cli() and related, how about removing it from
Documentation/spinlocks.txt?
Signed-off-by: Muthukumar R <muthur@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ 191.310008] WARNING: kmemcheck: Caught 32-bit read from freed memory (f0d25f14)
[ 191.310011] c056d2f088000000105fd2f00000000050415353040000000000000000000000
[ 191.310020] i i i i f f f f f f f f f f f f f f f f f f f f f f f f f f f f
[ 191.310027] ^
[ 191.310029]
[ 191.310032] Pid: 737, comm: modprobe Not tainted 3.0.0-rc5+ #268 Hewlett-Packard HP Compaq 6005 Pro SFF PC/3047h
[ 191.310036] EIP: 0060:[<f80b3104>] EFLAGS: 00010286 CPU: 0
[ 191.310039] EIP is at hp_wmi_perform_query+0x104/0x150 [hp_wmi]
[ 191.310041] EAX: f0d25601 EBX: f0d25f00 ECX: 000121cf EDX: 000121ce
[ 191.310043] ESI: f0d25f10 EDI: f0f97ea8 EBP: f0f97ec4 ESP: c173f34c
[ 191.310045] DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
[ 191.310046] CR0: 8005003b CR2: f540c000 CR3: 30f30000 CR4: 000006d0
[ 191.310048] DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000
[ 191.310050] DR6: ffff4ff0 DR7: 00000400
[ 191.310051] [<f80b317b>] hp_wmi_dock_state+0x2b/0x40 [hp_wmi]
[ 191.310054] [<f80b6093>] hp_wmi_init+0x93/0x1a8 [hp_wmi]
[ 191.310057] [<c10011f0>] do_one_initcall+0x30/0x170
[ 191.310061] [<c107ab9f>] sys_init_module+0xef/0x1a60
[ 191.310064] [<c149f998>] sysenter_do_call+0x12/0x28
[ 191.310067] [<ffffffff>] 0xffffffff
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Matthew Garrett <mjg@redhat.com>
This reverts commit a3d77411e8,
as it causes a mess in the wireless rfkill status on some models.
It is probably a bad idea to toggle the rfkill for all dell models
without the respect to the claim that it is hardware-controlled.
Cc: stable@kernel.org
Signed-off-by: Keng-Yu Lin <kengyu@canonical.com>
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Patch 2e711c04db
(PM: Remove sysdev suspend, resume and shutdown operations)
deleted sysdev_suspend(), which was being relied on to call
check_wakeup_irqs() in suspend. If check_wakeup_irqs() is not
called, wake interrupts that are pending when suspend is
entered may be lost. It also breaks IRQCHIP_MASK_ON_SUSPEND,
which is handled in check_wakeup_irqs().
This patch adds a call to check_wakeup_irqs() in syscore_suspend(),
similar to what was deleted in sysdev_suspend().
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
I came across a memory leak during a cyclic cpu-online-offline test.
Signed-off-by: Yu Luming <luming.yu@intel.com>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Jones <davej@redhat.com>
* 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/staging:
hwmon: (pmbus) Improve auto-detection of temperature status register
hwmon: (lm95241) Fix negative temperature results
hwmon: (lm95241) Fix chip detection code
It is possible that a PMBus device supports the READ_TEMPERATURE2 and/or
READ_TEMPERATURE3 registers but does not support READ_TEMPERATURE1.
Improve temperature status register detection to address this condition.
Reported-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com>
Acked-by: Jean Delvare <khali@linux-fr.org>
Cc: stable@kernel.org # 2.6.39+
Negative temperatures were returned in degrees C instead of milli-Degrees C.
Also, negative temperatures were reported for remote temperature sensors even
if the chip was configured for positive-only results.
Fix by detecting temperature modes, and by treating negative temperatures
similar to positive temperatures, with appropriate sign extension.
Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com>
Acked-by: Jean Delvare <khali@linux-fr.org>
Cc: stable@kernel.org # 2.6.30+
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6:
ALSA: hda - Fix a copmile warning
ASoC: ak4642: fixup snd_soc_update_bits mask for PW_MGMT2
ALSA: hda - Change all ADCs for dual-adc switching mode for Realtek
ASoC: Manage WM8731 ACTIVE bit as a supply widget
ASoC: Don't set invalid name string to snd_card->driver field
ASoC: Ensure we delay long enough for WM8994 FLL to lock when starting
ASoC: Tegra: I2S: Ensure clock is enabled when writing regs
ASoC: Fix Blackfin I2S _pointer() implementation return in bounds values
ASoC: tlv320aic3x: Do soft reset to codec when going to bias off state
ASoC: tlv320aic3x: Don't sync first two registers from register cache
audio: tlv320aic26: fix PLL register configuration
* 'fixes' of master.kernel.org:/home/rmk/linux-2.6-arm:
ARM: 6994/1: smp_twd: Fix typo in 'twd_timer_rate' printing
ARM: 6987/1: l2x0: fix disabling function to avoid deadlock
ARM: 6966/1: ep93xx: fix inverted RTS/DTR signals on uart1
ARM: 6980/1: mmci: use StartBitErr to detect bad connections
ARM: 6979/1: mach-vt8500: add forgotten irq_data conversion
ARM: move memory layout sanity checking before meminfo initialization
ARM: 6990/1: MAINTAINERS: add entry for ARM PMU profiling and debugging
ARM: 6989/1: perf: do not start the PMU when no events are present
ARM: dmabounce: fix map_single() error return value
When firewire-ohci is bound to a Pinnacle MovieBoard, eventually a
"Register access failure" is logged and an interrupt storm or a kernel
panic happens. https://bugzilla.kernel.org/show_bug.cgi?id=36622
Until this is sorted out (if that is going to succeed at all), let's
just prevent firewire-ohci from touching these devices.
Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: <stable@kernel.org>
Regression introduced in commit 724d9f1cfb.
Prior to that, expand_dfs_referral would regenerate the mount data string
and then call cifs_parse_mount_options to re-parse it (klunky, but it
worked). The above commit moved cifs_parse_mount_options out of cifs_mount,
so the re-parsing of the new mount options no longer occurred. Fix it by
making expand_dfs_referral re-parse the mount options.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
This needs to be done regardless of whether that KConfig option is set
or not.
Reported-by: Sven-Haegar Koch <haegar@sdinet.de>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
It's harmless but annyoing.
sound/pci/hda/patch_realtek.c: In function ‘alc_cap_getput_caller’:
sound/pci/hda/patch_realtek.c:2722:9: warning: ‘err’ may be used uninitialized in this function
Signed-off-by: Takashi Iwai <tiwai@suse.de>
* 's5p-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene/linux-samsung:
ARM: S3C2440: fix section mismatch on mini2440
ARM: S3C24XX: drop return codes in void function of dma.c
ARM: S3C24XX: don't use uninitialized variable in dma.c
ARM: EXYNOS4: Set appropriate I2C device variant
ARM: S5PC100: Fix for compilation error
spi/s3c64xx: Bug fix for SPI with different FIFO level
ARM: SAMSUNG: Add tx_st_done variable
ARM: EXYNOS4: Address a section mismatch w/ suspend issue.
ARM: S5P: Fix bug on init of PWMTimers for HRTimer
ARM: SAMSUNG: header file revised to prevent declaring duplicated
ARM: EXYNOS4: fix improper gpio configuration
ARM: EXYNOS4: Fix card detection for sdhci 0 and 2
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/lrg/voltage-2.6:
regulator: max8997: Fix setting inappropriate value for ramp_delay variable
regulator: db8500-prcmu: small fixes
regulator: max8997: remove dependency on platform_data pointer
regulator: MAX8997: Fix for divide by zero error
regulator: max8952 - fix wrong gpio valid check
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
btrfs: fix oops when doing space balance
Btrfs: don't panic if we get an error while balancing V2
btrfs: add missing options displayed in mount output
This driver handles the variants pca9530-pca9533, so it chose the name
"pca953x". However, there is a gpio driver which decided on the same
name. As a result, those two can't be loaded at the same time. Add a
subsystem prefix to make the driver name unique. Device matching will not
suffer, because both are I2C drivers which match using a
i2c_device_id-table which is not altered.
Signed-off-by: Wolfram Sang <w.sang@pengutronix.de>
Acked-by: Jean Delvare <khali@linux-fr.org>
Cc: Richard Purdie <richard.purdie@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
remap_pfn_range() means map physical address pfn<<PAGE_SHIFT to user addr.
For nommu arch it's implemented by vma->vm_start = pfn << PAGE_SHIFT which
is wrong acroding the original meaning of this function. And some driver
developer using remap_pfn_range() with correct parameter will get
unexpected result because vm_start is changed. It should be implementd
like addr = pfn << PAGE_SHIFT but which is meanless on nommu arch, this
patch just make it simply return.
Parameter name and setting of vma->vm_flags also be fixed.
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: David Howells <dhowells@redhat.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes a regression in 3.0 reported by Paul Parsons regarding the
removal of the msleep(1) in the ds1wm_reset() function:
: The linux-3.0-rc4 DS1WM 1-wire driver is logging "bus error, retrying"
: error messages on an HP iPAQ hx4700 PDA (XScale-PXA270):
:
: <snip>
: Driver for 1-wire Dallas network protocol.
: DS1WM w1 busmaster driver - (c) 2004 Szabolcs Gyurko
: 1-Wire driver for the DS2760 battery monitor chip - (c) 2004-2005, Szabolcs Gyurko
: ds1wm ds1wm: pass: 1 bus error, retrying
: ds1wm ds1wm: pass: 2 bus error, retrying
: ds1wm ds1wm: pass: 3 bus error, retrying
: ds1wm ds1wm: pass: 4 bus error, retrying
: ds1wm ds1wm: pass: 5 bus error, retrying
: ...
:
: The visible result is that the battery charging LED is erratic; sometimes
: it works, mostly it doesn't.
:
: The linux-2.6.39 DS1WM 1-wire driver worked OK. I haven't tried 3.0-rc1,
: 3.0-rc2, or 3.0-rc3.
This sleep should not be required on normal circuitry provided the
pull-ups on the bus are correctly adapted to the slaves. Unfortunately,
this is not always the case. The sleep is restored but as a parameter to
the probe function in the pdata.
[akpm@linux-foundation.org: coding-style fixes]
Reported-by: Paul Parsons <lost.distance@yahoo.com>
Tested-by: Paul Parsons <lost.distance@yahoo.com>
Signed-off-by: Jean-François Dagenais <dagenaisj@sonatest.com>
Cc: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 889976dbcb ("memcg: reclaim memory from nodes in round-robin
order") adds an numa node round-robin for memcg. But the information is
updated once per 10sec.
This patch changes the update trigger from jiffies to memcg's event count.
After this patch, numa scan information will be updated when we see 1024
events of pagein/pageout under a memcg.
[akpm@linux-foundation.org: attempt to repair code layout]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, in mem_cgroup_hierarchical_reclaim(), mem_cgroup_local_usage() is
used for checking whether the memcg contains reclaimable pages or not. If
no pages in it, the routine skips it.
But, mem_cgroup_local_usage() contains Unevictable pages and cannot handle
"noswap" condition correctly. This doesn't work on a swapless system.
This patch adds test_mem_cgroup_reclaimable() and replaces
mem_cgroup_local_usage(). test_mem_cgroup_reclaimable() see LRU counter
and returns correct answer to the caller. And this new function has
"noswap" argument and can see only FILE LRU if necessary.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix kerneldoc layout]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__tlb_remove_page() switches to a new batch page, but still checks space
in the old batch. This check always fails, and causes a forced tlb flush.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During allocator-intensive workloads, kswapd will be woken frequently
causing free memory to oscillate between the high and min watermark. This
is expected behaviour. Unfortunately, if the highest zone is small, a
problem occurs.
When balance_pgdat() returns, it may be at a lower classzone_idx than it
started because the highest zone was unreclaimable. Before checking if it
should go to sleep though, it checks pgdat->classzone_idx which when there
is no other activity will be MAX_NR_ZONES-1. It interprets this as it has
been woken up while reclaiming, skips scheduling and reclaims again. As
there is no useful reclaim work to do, it enters into a loop of shrinking
slab consuming loads of CPU until the highest zone becomes reclaimable for
a long period of time.
There are two problems here. 1) If the returned classzone or order is
lower, it'll continue reclaiming without scheduling. 2) if the highest
zone was marked unreclaimable but balance_pgdat() returns immediately at
DEF_PRIORITY, the new lower classzone is not communicated back to kswapd()
for sleeping.
This patch does two things that are related. If the end_zone is
unreclaimable, this information is communicated back. Second, if the
classzone or order was reduced due to failing to reclaim, new information
is not read from pgdat and instead an attempt is made to go to sleep. Due
to this, it is also necessary that pgdat->classzone_idx be initialised
each time to pgdat->nr_zones - 1 to avoid re-reads being interpreted as
wakeups.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Pádraig Brady <P@draigBrady.com>
Tested-by: Pádraig Brady <P@draigBrady.com>
Tested-by: Andrew Lutomirski <luto@mit.edu>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When deciding if kswapd is sleeping prematurely, the classzone is taken
into account but this is different to what balance_pgdat() and the
allocator are doing. Specifically, the DMA zone will be checked based on
the classzone used when waking kswapd which could be for a GFP_KERNEL or
GFP_HIGHMEM request. The lowmem reserve limit kicks in, the watermark is
not met and kswapd thinks it's sleeping prematurely keeping kswapd awake in
error.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Pádraig Brady <P@draigBrady.com>
Tested-by: Pádraig Brady <P@draigBrady.com>
Tested-by: Andrew Lutomirski <luto@mit.edu>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During allocator-intensive workloads, kswapd will be woken frequently
causing free memory to oscillate between the high and min watermark. This
is expected behaviour.
When kswapd applies pressure to zones during node balancing, it checks if
the zone is above a high+balance_gap threshold. If it is, it does not
apply pressure but it unconditionally shrinks slab on a global basis which
is excessive. In the event kswapd is being kept awake due to a high small
unreclaimable zone, it skips zone shrinking but still calls shrink_slab().
Once pressure has been applied, the check for zone being unreclaimable is
being made before the check is made if all_unreclaimable should be set.
This miss of unreclaimable can cause has_under_min_watermark_zone to be
set due to an unreclaimable zone preventing kswapd backing off on
congestion_wait().
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Pádraig Brady <P@draigBrady.com>
Tested-by: Pádraig Brady <P@draigBrady.com>
Tested-by: Andrew Lutomirski <luto@mit.edu>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During allocator-intensive workloads, kswapd will be woken frequently
causing free memory to oscillate between the high and min watermark. This
is expected behaviour. Unfortunately, if the highest zone is small, a
problem occurs.
This seems to happen most with recent sandybridge laptops but it's
probably a co-incidence as some of these laptops just happen to have a
small Normal zone. The reproduction case is almost always during copying
large files that kswapd pegs at 100% CPU until the file is deleted or
cache is dropped.
The problem is mostly down to sleeping_prematurely() keeping kswapd awake
when the highest zone is small and unreclaimable and compounded by the
fact we shrink slabs even when not shrinking zones causing a lot of time
to be spent in shrinkers and a lot of memory to be reclaimed.
Patch 1 corrects sleeping_prematurely to check the zones matching
the classzone_idx instead of all zones.
Patch 2 avoids shrinking slab when we are not shrinking a zone.
Patch 3 notes that sleeping_prematurely is checking lower zones against
a high classzone which is not what allocators or balance_pgdat()
is doing leading to an artifical belief that kswapd should be
still awake.
Patch 4 notes that when balance_pgdat() gives up on a high zone that the
decision is not communicated to sleeping_prematurely()
This problem affects 2.6.38.8 for certain and is expected to affect 2.6.39
and 3.0-rc4 as well. If accepted, they need to go to -stable to be picked
up by distros and this series is against 3.0-rc4. I've cc'd people that
reported similar problems recently to see if they still suffer from the
problem and if this fixes it.
This patch: correct the check for kswapd sleeping in sleeping_prematurely()
During allocator-intensive workloads, kswapd will be woken frequently
causing free memory to oscillate between the high and min watermark. This
is expected behaviour.
A problem occurs if the highest zone is small. balance_pgdat() only
considers unreclaimable zones when priority is DEF_PRIORITY but
sleeping_prematurely considers all zones. It's possible for this sequence
to occur
1. kswapd wakes up and enters balance_pgdat()
2. At DEF_PRIORITY, marks highest zone unreclaimable
3. At DEF_PRIORITY-1, ignores highest zone setting end_zone
4. At DEF_PRIORITY-1, calls shrink_slab freeing memory from
highest zone, clearing all_unreclaimable. Highest zone
is still unbalanced
5. kswapd returns and calls sleeping_prematurely
6. sleeping_prematurely looks at *all* zones, not just the ones
being considered by balance_pgdat. The highest small zone
has all_unreclaimable cleared but the zone is not
balanced. all_zones_ok is false so kswapd stays awake
This patch corrects the behaviour of sleeping_prematurely to check the
zones balance_pgdat() checked.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Pádraig Brady <P@draigBrady.com>
Tested-by: Pádraig Brady <P@draigBrady.com>
Tested-by: Andrew Lutomirski <luto@mit.edu>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>