Mesen/Core/PPU.cpp

620 lines
18 KiB
C++

#include "stdafx.h"
#include "PPU.h"
#include "CPU.h"
IVideoDevice *PPU::VideoDevice = nullptr;
uint32_t PPU_PALETTE_RGB[] = {
0x666666, 0x002A88, 0x1412A7, 0x3B00A4, 0x5C007E,
0x6E0040, 0x6C0600, 0x561D00, 0x333500, 0x0B4800,
0x005200, 0x004F08, 0x00404D, 0x000000, 0x000000,
0x000000, 0xADADAD, 0x155FD9, 0x4240FF, 0x7527FE,
0xA01ACC, 0xB71E7B, 0xB53120, 0x994E00, 0x6B6D00,
0x388700, 0x0C9300, 0x008F32, 0x007C8D, 0x000000,
0x000000, 0x000000, 0xFFFEFF, 0x64B0FF, 0x9290FF,
0xC676FF, 0xF36AFF, 0xFE6ECC, 0xFE8170, 0xEA9E22,
0xBCBE00, 0x88D800, 0x5CE430, 0x45E082, 0x48CDDE,
0x4F4F4F, 0x000000, 0x000000, 0xFFFEFF, 0xC0DFFF,
0xD3D2FF, 0xE8C8FF, 0xFBC2FF, 0xFEC4EA, 0xFECCC5,
0xF7D8A5, 0xE4E594, 0xCFEF96, 0xBDF4AB, 0xB3F3CC,
0xB5EBF2, 0xB8B8B8, 0x000000, 0x000000,
};
PPU::PPU(MemoryManager *memoryManager)
{
_memoryManager = memoryManager;
_state = {};
_flags = {};
_statusFlags = {};
memset(_spriteRAM, 0xFF, 0x100);
_outputBuffer = new uint8_t[256 * 240 * 4];
}
PPU::~PPU()
{
delete[] _outputBuffer;
}
bool PPU::CheckFlag(PPUControlFlags flag)
{
return false;
}
void PPU::UpdateVideoRamAddr()
{
if(_scanline >= 239 || !IsRenderingEnabled()) {
_state.VideoRamAddr += _flags.VerticalWrite ? 32 : 1;
} else {
//"During rendering (on the pre-render line and the visible lines 0-239, provided either background or sprite rendering is enabled), "
//it will update v in an odd way, triggering a coarse X increment and a Y increment simultaneously"
IncHorizontalScrolling();
IncVerticalScrolling();
}
}
uint8_t PPU::ReadRAM(uint16_t addr)
{
uint8_t returnValue;
switch(GetRegisterID(addr)) {
case PPURegisters::Status:
_state.WriteToggle = false;
_flags.IntensifyBlue = false;
UpdateStatusFlag();
return _state.Status;
case PPURegisters::SpriteData:
return _spriteRAM[_state.SpriteRamAddr];
case PPURegisters::VideoMemoryData:
returnValue = _memoryReadBuffer;
_memoryReadBuffer = _memoryManager->ReadVRAM(_state.VideoRamAddr);
if(_state.VideoRamAddr >= 0x3F00) {
returnValue = ReadPaletteRAM(_state.VideoRamAddr);
}
UpdateVideoRamAddr();
return returnValue;
default:
//other registers are meant to be read-only
break;
}
return 0;
}
void PPU::WriteRAM(uint16_t addr, uint8_t value)
{
switch(GetRegisterID(addr)) {
case PPURegisters::Control:
SetControlRegister(value);
break;
case PPURegisters::Mask:
SetMaskRegister(value);
break;
case PPURegisters::SpriteAddr:
_state.SpriteRamAddr = value;
break;
case PPURegisters::SpriteData:
_spriteRAM[_state.SpriteRamAddr] = value;
_state.SpriteRamAddr = (_state.SpriteRamAddr + 1) % 0x100;
break;
case PPURegisters::ScrollOffsets:
if(_state.WriteToggle) {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x73E0) | ((value & 0xF8) << 2) | ((value & 0x07) << 12);
} else {
_state.XScroll = value & 0x07;
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x001F) | (value >> 3);
}
_state.WriteToggle = !_state.WriteToggle;
break;
case PPURegisters::VideoMemoryAddr:
if(_state.WriteToggle) {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x00FF) | value;
_state.VideoRamAddr = _state.TmpVideoRamAddr;
} else {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0xFF00) | ((value & 0x3F) << 8);
}
_state.WriteToggle = !_state.WriteToggle;
break;
case PPURegisters::VideoMemoryData:
if(_state.VideoRamAddr >= 0x3F00) {
WritePaletteRAM(_state.VideoRamAddr, value);
} else {
_memoryManager->WriteVRAM(_state.VideoRamAddr, value);
}
UpdateVideoRamAddr();
break;
case PPURegisters::SpriteDMA:
//DMA transfer starts at SpriteRamAddr and wraps around
for(int i = 0; i < 0x100; i++) {
_spriteRAM[(_state.SpriteRamAddr+i)&0xFF] = _memoryManager->Read(value*0x100 + i);
}
//"the DMA procedure takes 513 CPU cycles (+1 on odd CPU cycles)"
CPU::IncCycleCount((CPU::GetCycleCount() % 2 == 0) ? 513 : 514);
break;
}
}
uint8_t PPU::ReadPaletteRAM(uint16_t addr)
{
addr &= 0x1F;
if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) {
addr &= ~0x10;
}
return _paletteRAM[addr];
}
void PPU::WritePaletteRAM(uint16_t addr, uint8_t value)
{
addr &= 0x1F;
if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) {
addr &= ~0x10;
}
_paletteRAM[addr] = value;
}
uint32_t PPU::GetBGPaletteEntry(uint32_t paletteOffset, uint32_t pixel)
{
if(pixel == 0) {
return ReadPaletteRAM(0x3F00) % 64;
} else {
return ReadPaletteRAM(0x3F00 + paletteOffset + pixel) % 64;
}
}
uint32_t PPU::GetSpritePaletteEntry(uint32_t paletteOffset, uint32_t pixel)
{
if(pixel == 0) {
return ReadPaletteRAM(0x3F00) % 64;
} else {
return ReadPaletteRAM(0x3F10 + paletteOffset + pixel) % 64;
}
}
bool PPU::IsRenderingEnabled()
{
return _flags.BackgroundEnabled || _flags.SpritesEnabled;
}
void PPU::SetControlRegister(uint8_t value)
{
_state.Control = value;
uint8_t nameTable = (_state.Control & 0x03);
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x0C00) | (nameTable << 10);
_flags.VerticalWrite = (_state.Control & 0x04) == 0x04;
_flags.SpritePatternAddr = ((_state.Control & 0x08) == 0x08) ? 0x1000 : 0x0000;
_flags.BackgroundPatternAddr = ((_state.Control & 0x10) == 0x10) ? 0x1000 : 0x0000;
_flags.LargeSprites = (_state.Control & 0x20) == 0x20;
bool originalVBlank = _flags.VBlank;
_flags.VBlank = (_state.Control & 0x80) == 0x80;
if(!originalVBlank && _flags.VBlank && _statusFlags.VerticalBlank) {
CPU::SetNMIFlag();
}
}
void PPU::SetMaskRegister(uint8_t value)
{
_state.Mask = value;
_flags.Grayscale = (_state.Mask & 0x01) == 0x01;
_flags.BackgroundMask = (_state.Mask & 0x02) == 0x02;
_flags.SpriteMask = (_state.Mask & 0x04) == 0x04;
_flags.BackgroundEnabled = (_state.Mask & 0x08) == 0x08;
_flags.SpritesEnabled = (_state.Mask & 0x10) == 0x10;
_flags.IntensifyRed = (_state.Mask & 0x20) == 0x20;
_flags.IntensifyGreen = (_state.Mask & 0x40) == 0x40;
_flags.IntensifyBlue = (_state.Mask & 0x80) == 0x80;
}
void PPU::UpdateStatusFlag()
{
_state.Status = ((uint8_t)_statusFlags.SpriteOverflow << 5) |
((uint8_t)_statusFlags.Sprite0Hit << 6) |
((uint8_t)_statusFlags.VerticalBlank << 7);
_statusFlags.VerticalBlank = false;
if(_scanline == 241 && _cycle == 0) {
_doNotSetVBFlag = true;
}
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around
void PPU::IncVerticalScrolling()
{
uint16_t addr = _state.VideoRamAddr;
if((addr & 0x7000) != 0x7000) {
// if fine Y < 7
addr += 0x1000; // increment fine Y
} else {
// fine Y = 0
addr &= ~0x7000;
int y = (addr & 0x03E0) >> 5; // let y = coarse Y
if(y == 29) {
y = 0; // coarse Y = 0
addr ^= 0x0800; // switch vertical nametable
} else if(y == 31){
y = 0; // coarse Y = 0, nametable not switched
} else {
y++; // increment coarse Y
}
addr = (addr & ~0x03E0) | (y << 5); // put coarse Y back into v
}
_state.VideoRamAddr = addr;
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around
void PPU::IncHorizontalScrolling()
{
//Increase coarse X scrolling value.
uint16_t addr = _state.VideoRamAddr;
if((addr & 0x001F) == 31) {
//When the value is 31, wrap around to 0 and switch nametable
addr = (addr & ~0x001F) ^ 0x0400;
} else {
addr++;
}
_state.VideoRamAddr = addr;
}
//Take from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching
uint16_t PPU::GetNameTableAddr()
{
return 0x2000 | (_state.VideoRamAddr & 0x0FFF);
}
//Take from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching
uint16_t PPU::GetAttributeAddr()
{
return 0x23C0 | (_state.VideoRamAddr & 0x0C00) | ((_state.VideoRamAddr >> 4) & 0x38) | ((_state.VideoRamAddr >> 2) & 0x07);
}
void PPU::LoadTileInfo()
{
_previousTile = _currentTile;
_currentTile = _nextTile;
uint16_t tileIndex = _memoryManager->ReadVRAM(GetNameTableAddr());
uint16_t tileAddr = (tileIndex << 4) | (_state.VideoRamAddr >> 12) | _flags.BackgroundPatternAddr;
uint16_t shift = ((_state.VideoRamAddr >> 4) & 0x04) | (_state.VideoRamAddr & 0x02);
_nextTile.PaletteOffset = ((_memoryManager->ReadVRAM(GetAttributeAddr()) >> shift) & 0x03) << 2;
_nextTile.LowByte = _memoryManager->ReadVRAM(tileAddr);
_nextTile.HighByte = _memoryManager->ReadVRAM(tileAddr + 8);
}
void PPU::LoadSpriteTileInfo(uint8_t spriteIndex)
{
uint32_t spriteAddr = spriteIndex * 4;
uint8_t spriteY = _secondarySpriteRAM[spriteAddr];
uint8_t tileIndex = _secondarySpriteRAM[spriteAddr+1];
uint8_t attributes = _secondarySpriteRAM[spriteAddr+2];
uint8_t spriteX = _secondarySpriteRAM[spriteAddr+3];
bool backgroundPriority = (attributes & 0x20) == 0x20;
bool horizontalMirror = (attributes & 0x40) == 0x40;
bool verticalMirror = (attributes & 0x80) == 0x80;
if(spriteY < 240) {
uint16_t tileAddr;
uint8_t lineOffset;
if(verticalMirror) {
lineOffset = (_flags.LargeSprites ? 15 : 7) - (_scanline - spriteY);
} else {
lineOffset = _scanline - spriteY;
}
if(_flags.LargeSprites) {
tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset);
} else {
tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset;
}
_spriteX[spriteIndex] = spriteX;
_spriteTiles[spriteIndex].BackgroundPriority = backgroundPriority;
_spriteTiles[spriteIndex].HorizontalMirror = horizontalMirror;
_spriteTiles[spriteIndex].PaletteOffset = (attributes & 0x03) << 2;
_spriteTiles[spriteIndex].LowByte = _memoryManager->ReadVRAM(tileAddr);
_spriteTiles[spriteIndex].HighByte = _memoryManager->ReadVRAM(tileAddr + 8);
}
}
void PPU::LoadNextTile()
{
_state.LowBitShift |= _nextTile.LowByte;
_state.HighBitShift |= _nextTile.HighByte;
}
void PPU::InitializeShiftRegisters()
{
_state.LowBitShift = (_currentTile.LowByte << 8) | _nextTile.LowByte;
_state.HighBitShift = (_currentTile.HighByte << 8) | _nextTile.HighByte;
}
void PPU::ShiftTileRegisters()
{
_state.LowBitShift <<= 1;
_state.HighBitShift <<= 1;
}
void PPU::DrawPixel()
{
//This is called 3.7 million times per second - needs to be as fast as possible.
uint8_t offset = _state.XScroll;
bool useBackground = true;
uint32_t backgroundColor = 0;
uint32_t spriteColor = 0;
if(_flags.BackgroundEnabled) {
backgroundColor = (((_state.LowBitShift << offset) & 0x8000) >> 15) | (((_state.HighBitShift << offset) & 0x8000) >> 14);
}
uint8_t i;
if(_flags.SpritesEnabled) {
for(i = 0; i < _spriteCount; i++) {
int32_t shift = -((int32_t)_spriteX[i] - (int32_t)_cycle + 1);
if(shift >= 0 && shift < 8) {
if(_spriteTiles[i].HorizontalMirror) {
spriteColor = ((_spriteTiles[i].LowByte >> shift) & 0x01) | ((_spriteTiles[i].HighByte >> shift) & 0x01) << 1;
} else {
spriteColor = ((_spriteTiles[i].LowByte << shift) & 0x80) >> 7 | ((_spriteTiles[i].HighByte << shift) & 0x80) >> 6;
}
if(spriteColor != 0) {
//First sprite without a 00 color, use it.
break;
}
}
}
}
if(_cycle <= 8) {
if(!_flags.BackgroundMask) {
//"0: Hide background in leftmost 8 pixels of screen;"
backgroundColor = 0;
}
if(!_flags.SpriteMask) {
//"0: Hide sprites in leftmost 8 pixels of screen;"
spriteColor = 0;
}
}
if(spriteColor != 0 && (backgroundColor == 0 || !_spriteTiles[i].BackgroundPriority)) {
//Check sprite priority
useBackground = false;
}
if(i == 0 && spriteColor != 0 && backgroundColor != 0 && _sprite0Visible && _cycle != 256 && _flags.BackgroundEnabled && _flags.SpritesEnabled) {
//"The hit condition is basically sprite zero is in range AND the first sprite output unit is outputting a non-zero pixel AND the background drawing unit is outputting a non-zero pixel."
//"Sprite zero hits do not register at x=255" (cycle 256)
//"... provided that background and sprite rendering are both enabled"
//"Should always miss when Y >= 239"
_statusFlags.Sprite0Hit = true;
}
uint32_t pixelColor = 0;
if(useBackground) {
// If we're grabbing the pixel from the high part of the shift register, use the previous tile's palette, not the current one
pixelColor = PPU_PALETTE_RGB[GetBGPaletteEntry(offset + ((_cycle - 1) % 8) < 8 ? _previousTile.PaletteOffset : _currentTile.PaletteOffset, backgroundColor)];
} else {
pixelColor = PPU_PALETTE_RGB[GetSpritePaletteEntry(_spriteTiles[i].PaletteOffset, spriteColor)];
}
uint32_t bufferPosition = _scanline * 256 + (_cycle - 1);
((uint32_t*)_outputBuffer)[bufferPosition] = 0xFF000000 | pixelColor;
//Shift the tile registers to prepare for the next cycle
ShiftTileRegisters();
}
void PPU::ProcessPreVBlankScanline()
{
//For pre-render scanline & all visible scanlines
if(IsRenderingEnabled()) {
//Update video ram address according to scrolling logic
if(_cycle == 256) {
IncVerticalScrolling();
} else if(_cycle == 257) {
//copy horizontal scrolling value from t
_state.VideoRamAddr = (_state.VideoRamAddr & ~0x041F) | (_state.TmpVideoRamAddr & 0x041F);
} else if((_cycle % 8 == 0 && _cycle > 0 && _cycle < 256) || _cycle == 328 || _cycle == 336) {
IncHorizontalScrolling();
}
}
if(_cycle >= 257 && _cycle <= 320) {
//"OAMADDR is set to 0 during each of ticks 257-320 (the sprite tile loading interval) of the pre-render and visible scanlines."
_state.SpriteRamAddr = 0;
}
}
void PPU::ProcessPrerenderScanline()
{
ProcessPreVBlankScanline();
if(_cycle == 1) {
_statusFlags.SpriteOverflow = false;
_statusFlags.Sprite0Hit = false;
_statusFlags.VerticalBlank = false;
} else if(_cycle >= 280 && _cycle <= 304) {
if(IsRenderingEnabled()) {
//copy vertical scrolling value from t
_state.VideoRamAddr = (_state.VideoRamAddr & ~0x7BE0) | (_state.TmpVideoRamAddr & 0x7BE0);
}
} else if(_cycle == 339 && _flags.BackgroundEnabled && (_frameCount % 2 == 1)) {
//Skip a cycle for odd frames, if background drawing is enabled
_cycle = -1;
_scanline = 0;
} else if(_cycle == 321 || _cycle == 329) {
LoadTileInfo();
if(_cycle == 329) {
InitializeShiftRegisters();
}
}
}
void PPU::ProcessVisibleScanline()
{
if(_cycle > 0 && _cycle <= 256) {
if((_cycle - 1) % 8 == 0) {
//Cycle 1, 9, 17, etc.
if(_cycle != 1) {
LoadNextTile();
}
LoadTileInfo();
}
DrawPixel();
if(IsRenderingEnabled()) {
CopyOAMData();
}
if(_cycle == 256 && _scanline == 239) {
//Send frame to GUI once the last pixel has been output
PPU::VideoDevice->UpdateFrame(_outputBuffer);
}
} else if((_cycle - 261) % 8 == 0 && _cycle <= 320) {
uint32_t spriteIndex = (_cycle - 261) / 8;
if(spriteIndex < _spriteCount) {
LoadSpriteTileInfo(spriteIndex);
}
} else if(_cycle == 321 || _cycle == 329) {
LoadTileInfo();
if(_cycle == 329) {
InitializeShiftRegisters();
}
}
ProcessPreVBlankScanline();
}
void PPU::CopyOAMData()
{
static uint8_t _buffer = 0;
static bool _writeData = false;
static uint32_t _overflowCounter = 0;
static bool _sprite0Added = true;
if(_cycle < 65) {
//Clear secondary OAM at between cycle 0 and 64
_secondarySpriteRAM[_cycle >> 1] = 0xFF;
} else {
if(_cycle == 65) {
_overflowCounter = 0;
_sprite0Added = false;
_writeData = false;
_secondaryOAMAddr = 0;
} else if(_cycle == 256) {
_sprite0Visible = _sprite0Added;
_spriteCount = (_secondaryOAMAddr >> 2);
}
if(_cycle & 0x01) {
//Read a byte from the primary OAM on odd cycles
_buffer = _spriteRAM[_state.SpriteRamAddr & 0xFF];
_state.SpriteRamAddr++;
} else {
if(!_writeData && _state.SpriteRamAddr < 0x100 && _scanline >= _buffer && _scanline < _buffer + (_flags.LargeSprites ? 16 : 8)) {
_writeData = true;
}
if(_secondaryOAMAddr < 0x20) {
//Copy 1 byte to secondary OAM
_secondarySpriteRAM[_secondaryOAMAddr] = _buffer;
if(_writeData) {
_secondaryOAMAddr++;
if(_state.SpriteRamAddr == 0x01) {
_sprite0Added = true;
}
if((_secondaryOAMAddr & 0x03) == 0) {
//Done copying
_writeData = false;
}
} else {
_state.SpriteRamAddr += 3;
}
} else {
//8 sprites have been found, check next sprite for overflow + emulate PPU bug
//Based on: http://forums.nesdev.com/viewtopic.php?p=85431#p85431
//Behavior matches: http://forums.nesdev.com/viewtopic.php?p=1387#p1387
if(!_statusFlags.SpriteOverflow) {
if(_writeData) {
//Sprite is visible, consider this to be an overflow
_statusFlags.SpriteOverflow = true;
_overflowCounter = 3;
} else if((_state.SpriteRamAddr & 0x3) != 0) {
//Sprite isn't on this scanline, trigger sprite evaluation bug
_state.SpriteRamAddr += 4;
}
} else {
if(_overflowCounter != 0) {
_overflowCounter--;
if(_overflowCounter == 0) {
_state.SpriteRamAddr = (_state.SpriteRamAddr + 3) & 0x0FFC;
}
} else {
_state.SpriteRamAddr = (_state.SpriteRamAddr + 4) & 0x0FFC;
}
}
}
}
}
}
void PPU::BeginVBlank()
{
if(_cycle == 1) {
if(!_doNotSetVBFlag) {
_statusFlags.VerticalBlank = true;
if(_flags.VBlank) {
CPU::SetNMIFlag();
}
}
_doNotSetVBFlag = false;
}
}
void PPU::EndVBlank()
{
if(_cycle == 340) {
_frameCount++;
}
}
void PPU::Exec()
{
uint64_t equivalentCycleCount = CPU::GetCycleCount() * 3;
uint32_t gap = (uint32_t)(equivalentCycleCount - _cycleCount);
_cycleCount += gap;
while(gap > 0) {
if(_scanline == -1) {
ProcessPrerenderScanline();
} else if(_scanline < 240) {
ProcessVisibleScanline();
} else if(_scanline == 241) {
BeginVBlank();
} else if(_scanline == 260) {
EndVBlank();
}
if(_cycle == 340) {
_cycle = 0;
_scanline++;
if(_scanline == 261) {
_scanline = -1;
}
} else {
_cycle++;
}
gap--;
}
}