Mesen/Core/PPU.cpp

740 lines
22 KiB
C++

#include "stdafx.h"
#include "PPU.h"
#include "CPU.h"
#include "EmulationSettings.h"
PPU* PPU::Instance = nullptr;
IVideoDevice *PPU::VideoDevice = nullptr;
PPU::PPU(MemoryManager *memoryManager)
{
PPU::Instance = this;
_memoryManager = memoryManager;
_outputBuffer = new uint16_t[256 * 240];
Reset();
}
PPU::~PPU()
{
delete[] _outputBuffer;
}
void PPU::Reset()
{
_state = {};
_flags = {};
_statusFlags = {};
_scanline = 0;
_cycle = 0;
_frameCount = 0;
_memoryReadBuffer = 0;
memset(_spriteRAM, 0xFF, 0x100);
}
void PPU::SetNesModel(NesModel model)
{
_nesModel = model;
_vblankEnd = (model == NesModel::NTSC ? 260 : 311);
}
PPUDebugState PPU::GetState()
{
PPUDebugState state;
state.ControlFlags = _flags;
state.StatusFlags = _statusFlags;
state.State = _state;
state.Cycle = _cycle;
state.Scanline = _scanline;
return state;
}
void PPU::UpdateVideoRamAddr()
{
if(_scanline >= 239 || !IsRenderingEnabled()) {
_state.VideoRamAddr += _flags.VerticalWrite ? 32 : 1;
//Trigger memory read when setting the vram address - needed by MMC3 IRQ counter
//"Should be clocked when A12 changes to 1 via $2007 read/write"
_memoryManager->ReadVRAM(_state.VideoRamAddr);
} else {
//"During rendering (on the pre-render line and the visible lines 0-239, provided either background or sprite rendering is enabled), "
//it will update v in an odd way, triggering a coarse X increment and a Y increment simultaneously"
IncHorizontalScrolling();
IncVerticalScrolling();
}
}
uint8_t PPU::ReadRAM(uint16_t addr)
{
uint8_t returnValue;
switch(GetRegisterID(addr)) {
case PPURegisters::Status:
_state.WriteToggle = false;
_flags.IntensifyBlue = false;
UpdateStatusFlag();
return _state.Status;
case PPURegisters::SpriteData:
return _spriteRAM[_state.SpriteRamAddr];
case PPURegisters::VideoMemoryData:
returnValue = _memoryReadBuffer;
_memoryReadBuffer = _memoryManager->ReadVRAM(_state.VideoRamAddr);
if(_state.VideoRamAddr >= 0x3F00) {
returnValue = ReadPaletteRAM(_state.VideoRamAddr);
}
UpdateVideoRamAddr();
return returnValue;
default:
//other registers are meant to be read-only
break;
}
return 0;
}
void PPU::WriteRAM(uint16_t addr, uint8_t value)
{
switch(GetRegisterID(addr)) {
case PPURegisters::Control:
SetControlRegister(value);
break;
case PPURegisters::Mask:
SetMaskRegister(value);
break;
case PPURegisters::SpriteAddr:
_state.SpriteRamAddr = value;
break;
case PPURegisters::SpriteData:
_spriteRAM[_state.SpriteRamAddr] = value;
_state.SpriteRamAddr = (_state.SpriteRamAddr + 1) & 0xFF;
break;
case PPURegisters::ScrollOffsets:
if(_state.WriteToggle) {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x73E0) | ((value & 0xF8) << 2) | ((value & 0x07) << 12);
} else {
_state.XScroll = value & 0x07;
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x001F) | (value >> 3);
}
_state.WriteToggle = !_state.WriteToggle;
break;
case PPURegisters::VideoMemoryAddr:
if(_state.WriteToggle) {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x00FF) | value;
_state.VideoRamAddr = _state.TmpVideoRamAddr;
//Trigger memory read when setting the vram address - needed by MMC3 IRQ counter
//"4) Should be clocked when A12 changes to 1 via $2006 write"
_memoryManager->ReadVRAM(_state.VideoRamAddr);
} else {
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0xFF00) | ((value & 0x3F) << 8);
}
_state.WriteToggle = !_state.WriteToggle;
break;
case PPURegisters::VideoMemoryData:
if(_state.VideoRamAddr >= 0x3F00) {
WritePaletteRAM(_state.VideoRamAddr, value);
} else {
_memoryManager->WriteVRAM(_state.VideoRamAddr, value);
}
UpdateVideoRamAddr();
break;
case PPURegisters::SpriteDMA:
CPU::RunDMATransfer(_spriteRAM, _state.SpriteRamAddr, value);
break;
}
}
uint8_t PPU::ReadPaletteRAM(uint16_t addr)
{
addr &= 0x1F;
if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) {
addr &= ~0x10;
}
return (_paletteRAM[addr] & _paletteRamMask);
}
void PPU::WritePaletteRAM(uint16_t addr, uint8_t value)
{
addr &= 0x1F;
if(addr == 0x10 || addr == 0x14 || addr == 0x18 || addr == 0x1C) {
addr &= ~0x10;
}
_paletteRAM[addr] = value;
}
uint32_t PPU::GetBGPaletteEntry(uint32_t paletteOffset, uint32_t pixel)
{
if(pixel == 0) {
return ReadPaletteRAM(0x3F00) | _intensifyColorBits;
} else {
return ReadPaletteRAM(0x3F00 + paletteOffset + pixel) | _intensifyColorBits;
}
}
uint32_t PPU::GetSpritePaletteEntry(uint32_t paletteOffset, uint32_t pixel)
{
if(pixel == 0) {
return ReadPaletteRAM(0x3F00) | _intensifyColorBits;
} else {
return ReadPaletteRAM(0x3F10 + paletteOffset + pixel) | _intensifyColorBits;
}
}
bool PPU::IsRenderingEnabled()
{
return _flags.BackgroundEnabled || _flags.SpritesEnabled;
}
void PPU::SetControlRegister(uint8_t value)
{
_state.Control = value;
uint8_t nameTable = (_state.Control & 0x03);
_state.TmpVideoRamAddr = (_state.TmpVideoRamAddr & ~0x0C00) | (nameTable << 10);
_flags.VerticalWrite = (_state.Control & 0x04) == 0x04;
_flags.SpritePatternAddr = ((_state.Control & 0x08) == 0x08) ? 0x1000 : 0x0000;
_flags.BackgroundPatternAddr = ((_state.Control & 0x10) == 0x10) ? 0x1000 : 0x0000;
_flags.LargeSprites = (_state.Control & 0x20) == 0x20;
//"By toggling NMI_output ($2000 bit 7) during vertical blank without reading $2002, a program can cause /NMI to be pulled low multiple times, causing multiple NMIs to be generated."
bool originalVBlank = _flags.VBlank;
_flags.VBlank = (_state.Control & 0x80) == 0x80;
if(!originalVBlank && _flags.VBlank && _statusFlags.VerticalBlank) {
CPU::SetNMIFlag();
} else if(_scanline == 241 && _cycle < 3 && !_flags.VBlank) {
CPU::ClearNMIFlag();
}
}
void PPU::SetMaskRegister(uint8_t value)
{
_state.Mask = value;
_flags.Grayscale = (_state.Mask & 0x01) == 0x01;
_flags.BackgroundMask = (_state.Mask & 0x02) == 0x02;
_flags.SpriteMask = (_state.Mask & 0x04) == 0x04;
_flags.BackgroundEnabled = (_state.Mask & 0x08) == 0x08;
_flags.SpritesEnabled = (_state.Mask & 0x10) == 0x10;
_flags.IntensifyBlue = (_state.Mask & 0x80) == 0x80;
//"Bit 0 controls a greyscale mode, which causes the palette to use only the colors from the grey column: $00, $10, $20, $30. This is implemented as a bitwise AND with $30 on any value read from PPU $3F00-$3FFF"
_paletteRamMask = _flags.Grayscale ? 0x30 : 0x3F;
if(_nesModel == NesModel::NTSC) {
_flags.IntensifyRed = (_state.Mask & 0x20) == 0x20;
_flags.IntensifyGreen = (_state.Mask & 0x40) == 0x40;
_intensifyColorBits = (value & 0xE0) << 1;
} else {
//"Note that on the Dendy and PAL NES, the green and red bits swap meaning."
_flags.IntensifyRed = (_state.Mask & 0x40) == 0x40;
_flags.IntensifyGreen = (_state.Mask & 0x20) == 0x20;
_intensifyColorBits = (_flags.IntensifyRed ? 0x40 : 0x00) | (_flags.IntensifyGreen ? 0x80 : 0x00) | (_flags.IntensifyBlue ? 0x100 : 0x00);
}
}
void PPU::UpdateStatusFlag()
{
_state.Status = ((uint8_t)_statusFlags.SpriteOverflow << 5) |
((uint8_t)_statusFlags.Sprite0Hit << 6) |
((uint8_t)_statusFlags.VerticalBlank << 7);
_statusFlags.VerticalBlank = false;
if(_scanline == 241) {
if(_cycle < 3) {
CPU::ClearNMIFlag();
if(_cycle == 0) {
_doNotSetVBFlag = true;
}
}
}
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around
void PPU::IncVerticalScrolling()
{
uint16_t addr = _state.VideoRamAddr;
if((addr & 0x7000) != 0x7000) {
// if fine Y < 7
addr += 0x1000; // increment fine Y
} else {
// fine Y = 0
addr &= ~0x7000;
int y = (addr & 0x03E0) >> 5; // let y = coarse Y
if(y == 29) {
y = 0; // coarse Y = 0
addr ^= 0x0800; // switch vertical nametable
} else if(y == 31){
y = 0; // coarse Y = 0, nametable not switched
} else {
y++; // increment coarse Y
}
addr = (addr & ~0x03E0) | (y << 5); // put coarse Y back into v
}
_state.VideoRamAddr = addr;
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Wrapping_around
void PPU::IncHorizontalScrolling()
{
//Increase coarse X scrolling value.
uint16_t addr = _state.VideoRamAddr;
if((addr & 0x001F) == 31) {
//When the value is 31, wrap around to 0 and switch nametable
addr = (addr & ~0x001F) ^ 0x0400;
} else {
addr++;
}
_state.VideoRamAddr = addr;
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching
uint16_t PPU::GetNameTableAddr()
{
return 0x2000 | (_state.VideoRamAddr & 0x0FFF);
}
//Taken from http://wiki.nesdev.com/w/index.php/The_skinny_on_NES_scrolling#Tile_and_attribute_fetching
uint16_t PPU::GetAttributeAddr()
{
return 0x23C0 | (_state.VideoRamAddr & 0x0C00) | ((_state.VideoRamAddr >> 4) & 0x38) | ((_state.VideoRamAddr >> 2) & 0x07);
}
void PPU::LoadTileInfo()
{
if(IsRenderingEnabled()) {
_previousTile = _currentTile;
_currentTile = _nextTile;
uint16_t tileIndex = _memoryManager->ReadVRAM(GetNameTableAddr());
uint16_t tileAddr = (tileIndex << 4) | (_state.VideoRamAddr >> 12) | _flags.BackgroundPatternAddr;
uint16_t shift = ((_state.VideoRamAddr >> 4) & 0x04) | (_state.VideoRamAddr & 0x02);
_nextTile.PaletteOffset = ((_memoryManager->ReadVRAM(GetAttributeAddr()) >> shift) & 0x03) << 2;
_nextTile.LowByte = _memoryManager->ReadVRAM(tileAddr);
_nextTile.HighByte = _memoryManager->ReadVRAM(tileAddr + 8);
}
}
void PPU::LoadSpriteTileInfo(uint8_t spriteIndex)
{
if(IsRenderingEnabled()) {
uint32_t spriteAddr = spriteIndex * 4;
uint8_t spriteY = _secondarySpriteRAM[spriteAddr];
uint8_t tileIndex = _secondarySpriteRAM[spriteAddr + 1];
uint8_t attributes = _secondarySpriteRAM[spriteAddr + 2];
uint8_t spriteX = _secondarySpriteRAM[spriteAddr + 3];
bool backgroundPriority = (attributes & 0x20) == 0x20;
bool horizontalMirror = (attributes & 0x40) == 0x40;
bool verticalMirror = (attributes & 0x80) == 0x80;
uint16_t tileAddr;
uint8_t lineOffset;
if(verticalMirror) {
lineOffset = (_flags.LargeSprites ? 15 : 7) - (_scanline - spriteY);
} else {
lineOffset = _scanline - spriteY;
}
if(_flags.LargeSprites) {
tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset);
} else {
tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset;
}
if(spriteIndex < _spriteCount && spriteY < 240) {
_spriteX[spriteIndex] = spriteX;
_spriteTiles[spriteIndex].BackgroundPriority = backgroundPriority;
_spriteTiles[spriteIndex].HorizontalMirror = horizontalMirror;
_spriteTiles[spriteIndex].PaletteOffset = (attributes & 0x03) << 2;
_spriteTiles[spriteIndex].LowByte = _memoryManager->ReadVRAM(tileAddr);
_spriteTiles[spriteIndex].HighByte = _memoryManager->ReadVRAM(tileAddr + 8);
} else {
//Fetches to sprite 0xFF for remaining sprites/hidden - used by MMC3 IRQ counter
lineOffset = 0;
tileIndex = 0xFF;
if(_flags.LargeSprites) {
tileAddr = (((tileIndex & 0x01) ? 0x1000 : 0x0000) | ((tileIndex & ~0x01) << 4)) + (lineOffset >= 8 ? lineOffset + 8 : lineOffset);
} else {
tileAddr = ((tileIndex << 4) | _flags.SpritePatternAddr) + lineOffset;
}
_memoryManager->ReadVRAM(tileAddr);
_memoryManager->ReadVRAM(tileAddr + 8);
}
}
}
void PPU::LoadNextTile()
{
_state.LowBitShift |= _nextTile.LowByte;
_state.HighBitShift |= _nextTile.HighByte;
}
void PPU::InitializeShiftRegisters()
{
_state.LowBitShift = (_currentTile.LowByte << 8) | _nextTile.LowByte;
_state.HighBitShift = (_currentTile.HighByte << 8) | _nextTile.HighByte;
}
void PPU::ShiftTileRegisters()
{
_state.LowBitShift <<= 1;
_state.HighBitShift <<= 1;
}
void PPU::DrawPixel()
{
//This is called 3.7 million times per second - needs to be as fast as possible.
uint16_t &pixel = _outputBuffer[(_scanline << 8) + _cycle - 1];
if(IsRenderingEnabled() || ((_state.VideoRamAddr & 0x3F00) != 0x3F00)) {
uint8_t offset = _state.XScroll;
uint32_t backgroundColor = 0;
if((_cycle > 8 || _flags.BackgroundMask) && _flags.BackgroundEnabled) {
//BackgroundMask = false: Hide background in leftmost 8 pixels of screen
backgroundColor = (((_state.LowBitShift << offset) & 0x8000) >> 15) | (((_state.HighBitShift << offset) & 0x8000) >> 14);
}
if((_cycle > 8 || _flags.SpriteMask) && _flags.SpritesEnabled) {
//SpriteMask = true: Hide sprites in leftmost 8 pixels of screen
for(uint8_t i = 0; i < _spriteCount; i++) {
int32_t shift = -((int32_t)_spriteX[i] - (int32_t)_cycle + 1);
if(shift >= 0 && shift < 8) {
uint32_t spriteColor;
if(_spriteTiles[i].HorizontalMirror) {
spriteColor = ((_spriteTiles[i].LowByte >> shift) & 0x01) | ((_spriteTiles[i].HighByte >> shift) & 0x01) << 1;
} else {
spriteColor = ((_spriteTiles[i].LowByte << shift) & 0x80) >> 7 | ((_spriteTiles[i].HighByte << shift) & 0x80) >> 6;
}
if(spriteColor != 0) {
//First sprite without a 00 color, use it.
if(i == 0 && backgroundColor != 0 && _sprite0Visible && _cycle != 256 && _flags.BackgroundEnabled) {
//"The hit condition is basically sprite zero is in range AND the first sprite output unit is outputting a non-zero pixel AND the background drawing unit is outputting a non-zero pixel."
//"Sprite zero hits do not register at x=255" (cycle 256)
//"... provided that background and sprite rendering are both enabled"
//"Should always miss when Y >= 239"
_statusFlags.Sprite0Hit = true;
}
if(backgroundColor == 0 || !_spriteTiles[i].BackgroundPriority) {
//Check sprite priority
pixel = GetSpritePaletteEntry(_spriteTiles[i].PaletteOffset, spriteColor);
return;
}
break;
}
}
}
}
pixel = GetBGPaletteEntry(offset + ((_cycle - 1) & 0x07) < 8 ? _previousTile.PaletteOffset : _currentTile.PaletteOffset, backgroundColor);
} else {
//"If the current VRAM address points in the range $3F00-$3FFF during forced blanking, the color indicated by this palette location will be shown on screen instead of the backdrop color."
pixel = ReadPaletteRAM(_state.VideoRamAddr) | _intensifyColorBits;
}
}
void PPU::ProcessPreVBlankScanline()
{
//For pre-render scanline & all visible scanlines
if(IsRenderingEnabled()) {
//Update video ram address according to scrolling logic
if((_cycle > 0 && _cycle < 256 && (_cycle & 0x07) == 0) || _cycle == 328 || _cycle == 336) {
IncHorizontalScrolling();
} else if(_cycle == 256) {
IncVerticalScrolling();
} else if(_cycle == 257) {
//copy horizontal scrolling value from t
_state.VideoRamAddr = (_state.VideoRamAddr & ~0x041F) | (_state.TmpVideoRamAddr & 0x041F);
}
}
if(_cycle >= 257 && _cycle <= 320) {
//"OAMADDR is set to 0 during each of ticks 257-320 (the sprite tile loading interval) of the pre-render and visible scanlines."
_state.SpriteRamAddr = 0;
}
}
void PPU::ProcessPrerenderScanline()
{
ProcessPreVBlankScanline();
if(_cycle == 0) {
_statusFlags.SpriteOverflow = false;
_statusFlags.Sprite0Hit = false;
_statusFlags.VerticalBlank = false;
}
if(((_cycle - 1) & 0x07) == 0 && _cycle < 250) {
LoadTileInfo();
} else if(_cycle >= 280 && _cycle <= 304) {
if(IsRenderingEnabled()) {
//copy vertical scrolling value from t
_state.VideoRamAddr = (_state.VideoRamAddr & ~0x7BE0) | (_state.TmpVideoRamAddr & 0x7BE0);
}
} else if(_nesModel == NesModel::NTSC && _cycle == 339 && IsRenderingEnabled() && (_frameCount & 0x01)) {
//This behavior is NTSC-specific - PAL frames are always the same number of cycles
//"With rendering enabled, each odd PPU frame is one PPU clock shorter than normal" (skip from 339 to 0, going over 340)
_cycle = -1;
_scanline = 0;
} else if(_cycle == 321 || _cycle == 329) {
LoadTileInfo();
if(_cycle == 329) {
InitializeShiftRegisters();
}
}
if(_cycle >= 261 && ((_cycle - 261) & 0x07) == 0 && _cycle <= 320) {
//Unused sprite tile fetches, but vital for MMC3 IRQ counter
uint32_t spriteIndex = (_cycle - 261) / 8;
LoadSpriteTileInfo(spriteIndex);
}
}
void PPU::ProcessVisibleScanline()
{
if(_cycle > 0 && _cycle <= 256) {
if(((_cycle - 1) & 0x07) == 0) {
//Cycle 1, 9, 17, etc.
if(_cycle != 1) {
LoadNextTile();
}
LoadTileInfo();
}
DrawPixel();
ShiftTileRegisters();
if(IsRenderingEnabled()) {
CopyOAMData();
}
} else if(((_cycle - 261) & 0x07) == 0 && _cycle <= 320) {
//Cycle 261, 269, etc.
uint32_t spriteIndex = (_cycle - 261) / 8;
LoadSpriteTileInfo(spriteIndex);
} else if(_cycle == 321 || _cycle == 329) {
LoadTileInfo();
if(_cycle == 329) {
InitializeShiftRegisters();
}
}
ProcessPreVBlankScanline();
}
void PPU::CopyOAMData()
{
if(_cycle < 65) {
//Clear secondary OAM at between cycle 0 and 64
_secondarySpriteRAM[_cycle >> 1] = 0xFF;
} else {
if(_cycle == 65) {
_overflowCounter = 0;
_sprite0Added = false;
_writeOAMData = false;
_secondaryOAMAddr = 0;
} else if(_cycle == 256) {
_sprite0Visible = _sprite0Added;
_spriteCount = (_secondaryOAMAddr >> 2);
}
if(_cycle & 0x01) {
//Read a byte from the primary OAM on odd cycles
_oamCopybuffer = _spriteRAM[_state.SpriteRamAddr & 0xFF];
_state.SpriteRamAddr++;
} else {
if(!_writeOAMData && _scanline >= _oamCopybuffer && _scanline < _oamCopybuffer + (_flags.LargeSprites ? 16 : 8) && _state.SpriteRamAddr < 0x100) {
_writeOAMData = true;
}
if(_secondaryOAMAddr < 0x20) {
//Copy 1 byte to secondary OAM
_secondarySpriteRAM[_secondaryOAMAddr] = _oamCopybuffer;
if(_writeOAMData) {
_secondaryOAMAddr++;
if(_state.SpriteRamAddr == 0x01) {
_sprite0Added = true;
}
if((_secondaryOAMAddr & 0x03) == 0) {
//Done copying
_writeOAMData = false;
}
} else {
_state.SpriteRamAddr += 3;
}
} else {
//8 sprites have been found, check next sprite for overflow + emulate PPU bug
//Based on: http://forums.nesdev.com/viewtopic.php?p=85431#p85431
//Behavior matches: http://forums.nesdev.com/viewtopic.php?p=1387#p1387
if(!_statusFlags.SpriteOverflow) {
if(_writeOAMData) {
//Sprite is visible, consider this to be an overflow
_statusFlags.SpriteOverflow = true;
_overflowCounter = 3;
} else if((_state.SpriteRamAddr & 0x3) != 0) {
//Sprite isn't on this scanline, trigger sprite evaluation bug
_state.SpriteRamAddr += 4;
}
} else {
if(_overflowCounter != 0) {
_overflowCounter--;
if(_overflowCounter == 0) {
_state.SpriteRamAddr = (_state.SpriteRamAddr + 3) & 0x0FFC;
}
} else {
_state.SpriteRamAddr = (_state.SpriteRamAddr + 4) & 0x0FFC;
}
}
}
}
}
}
void PPU::BeginVBlank()
{
if(_cycle == 0) {
//Send frame to GUI once the last pixel has been output
if(PPU::VideoDevice) {
PPU::VideoDevice->UpdateFrame(_outputBuffer);
}
if(!_doNotSetVBFlag) {
_statusFlags.VerticalBlank = true;
if(_flags.VBlank) {
CPU::SetNMIFlag();
}
}
_doNotSetVBFlag = false;
}
}
void PPU::EndVBlank()
{
if(_cycle == 340) {
_frameCount++;
}
}
void PPU::Exec()
{
if(_scanline != -1 && _scanline < 240) {
ProcessVisibleScanline();
} else if(_scanline == -1) {
ProcessPrerenderScanline();
} else if(_scanline == 241) {
BeginVBlank();
} else if(_scanline == _vblankEnd) {
EndVBlank();
}
if(_cycle == 340) {
_cycle = -1;
if(_scanline++ == _vblankEnd) {
_scanline = -1;
}
}
_cycle++;
}
void PPU::ExecStatic()
{
PPU::Instance->Exec();
PPU::Instance->Exec();
PPU::Instance->Exec();
if(PPU::Instance->_nesModel == NesModel::PAL && CPU::GetCycleCount() % 5 == 0) {
//PAL PPU runs 3.2 clocks for every CPU clock, so we need to run an extra clock every 5 CPU clocks
PPU::Instance->Exec();
}
}
void PPU::StreamState(bool saving)
{
Stream<uint8_t>(_state.Control);
Stream<uint8_t>(_state.Mask);
Stream<uint8_t>(_state.Status);
Stream<uint32_t>(_state.SpriteRamAddr);
Stream<uint16_t>(_state.VideoRamAddr);
Stream<uint8_t>(_state.XScroll);
Stream<uint16_t>(_state.TmpVideoRamAddr);
Stream<bool>(_state.WriteToggle);
Stream<uint16_t>(_state.HighBitShift);
Stream<uint16_t>(_state.LowBitShift);
Stream<bool>(_flags.VerticalWrite);
Stream<uint16_t>(_flags.SpritePatternAddr);
Stream<uint16_t>(_flags.BackgroundPatternAddr);
Stream<bool>(_flags.LargeSprites);
Stream<bool>(_flags.VBlank);
Stream<bool>(_flags.Grayscale);
Stream<bool>(_flags.BackgroundMask);
Stream<bool>(_flags.SpriteMask);
Stream<bool>(_flags.BackgroundEnabled);
Stream<bool>(_flags.SpritesEnabled);
Stream<bool>(_flags.IntensifyRed);
Stream<bool>(_flags.IntensifyGreen);
Stream<bool>(_flags.IntensifyBlue);
Stream<uint8_t>(_paletteRamMask);
Stream<uint16_t>(_intensifyColorBits);
Stream<bool>(_statusFlags.SpriteOverflow);
Stream<bool>(_statusFlags.Sprite0Hit);
Stream<bool>(_statusFlags.VerticalBlank);
Stream<int32_t>(_scanline);
Stream<uint32_t>(_cycle);
Stream<uint32_t>(_frameCount);
Stream<uint8_t>(_memoryReadBuffer);
StreamArray<uint8_t>(_paletteRAM, 0x100);
StreamArray<uint8_t>(_spriteRAM, 0x100);
StreamArray<uint8_t>(_secondarySpriteRAM, 0x20);
Stream<uint8_t>(_currentTile.LowByte);
Stream<uint8_t>(_currentTile.HighByte);
Stream<uint32_t>(_currentTile.PaletteOffset);
Stream<uint8_t>(_nextTile.LowByte);
Stream<uint8_t>(_nextTile.HighByte);
Stream<uint32_t>(_nextTile.PaletteOffset);
Stream<uint8_t>(_previousTile.LowByte);
Stream<uint8_t>(_previousTile.HighByte);
Stream<uint32_t>(_previousTile.PaletteOffset);
StreamArray<int32_t>(_spriteX, 0x8);
for(int i = 0; i < 8; i++) {
Stream<uint8_t>(_spriteTiles[i].LowByte);
Stream<uint8_t>(_spriteTiles[i].HighByte);
Stream<uint32_t>(_spriteTiles[i].PaletteOffset);
Stream<bool>(_spriteTiles[i].HorizontalMirror);
Stream<bool>(_spriteTiles[i].BackgroundPriority);
}
Stream<uint32_t>(_spriteCount);
Stream<uint32_t>(_secondaryOAMAddr);
Stream<bool>(_sprite0Visible);
Stream<uint8_t>(_oamCopybuffer);
Stream<bool>(_writeOAMData);
Stream<uint32_t>(_overflowCounter);
Stream<bool>(_sprite0Added);
Stream<NesModel>(_nesModel);
if(!saving) {
SetNesModel(_nesModel);
}
}