mirror of
https://github.com/libretro/RetroArch.git
synced 2025-01-18 23:04:25 +00:00
More static code analysis fixes
This commit is contained in:
parent
6647eab237
commit
d482dba2eb
@ -28,14 +28,18 @@
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
srand(time(NULL));
|
||||
int16_t input_i[1024];
|
||||
int16_t output_i[1024 * 8];
|
||||
|
||||
float input_f[1024];
|
||||
float output_f[1024 * 8];
|
||||
|
||||
double in_rate, out_rate, ratio;
|
||||
double ratio_max_deviation = 0.0;
|
||||
const rarch_resampler_t *resampler = NULL;
|
||||
void *re = NULL;
|
||||
|
||||
srand(time(NULL));
|
||||
|
||||
if (argc < 3 || argc > 4)
|
||||
{
|
||||
@ -48,18 +52,16 @@ int main(int argc, char *argv[])
|
||||
fprintf(stderr, "Ratio deviation: %.4f.\n", ratio_max_deviation);
|
||||
}
|
||||
|
||||
double in_rate = strtod(argv[1], NULL);
|
||||
double out_rate = strtod(argv[2], NULL);
|
||||
in_rate = strtod(argv[1], NULL);
|
||||
out_rate = strtod(argv[2], NULL);
|
||||
ratio = out_rate / in_rate;
|
||||
|
||||
double ratio = out_rate / in_rate;
|
||||
if (ratio >= 7.99)
|
||||
{
|
||||
fprintf(stderr, "Ratio is too high.\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
const rarch_resampler_t *resampler = NULL;
|
||||
void *re = NULL;
|
||||
if (!rarch_resampler_realloc(&re, &resampler, RESAMPLER_IDENT, out_rate / in_rate))
|
||||
{
|
||||
fprintf(stderr, "Failed to allocate resampler ...\n");
|
||||
@ -68,24 +70,26 @@ int main(int argc, char *argv[])
|
||||
|
||||
for (;;)
|
||||
{
|
||||
size_t output_samples;
|
||||
struct resampler_data data;
|
||||
double uniform, rate_mod;
|
||||
|
||||
if (fread(input_i, sizeof(int16_t), 1024, stdin) != 1024)
|
||||
break;
|
||||
|
||||
double uniform = (2.0 * rand()) / RAND_MAX - 1.0;
|
||||
double rate_mod = 1.0 + ratio_max_deviation * uniform;
|
||||
uniform = (2.0 * rand()) / RAND_MAX - 1.0;
|
||||
rate_mod = 1.0 + ratio_max_deviation * uniform;
|
||||
|
||||
audio_convert_s16_to_float(input_f, input_i, 1024, 1.0f);
|
||||
|
||||
struct resampler_data data = {
|
||||
.data_in = input_f,
|
||||
.data_out = output_f,
|
||||
.input_frames = sizeof(input_f) / (2 * sizeof(float)),
|
||||
.ratio = ratio * rate_mod,
|
||||
};
|
||||
data.data_in = input_f;
|
||||
data.data_out = output_f;
|
||||
data.input_frames = sizeof(input_f) / (2 * sizeof(float));
|
||||
data.ratio = ratio * rate_mod;
|
||||
|
||||
rarch_resampler_process(resampler, re, &data);
|
||||
|
||||
size_t output_samples = data.output_frames * 2;
|
||||
output_samples = data.output_frames * 2;
|
||||
|
||||
audio_convert_float_to_s16(output_i, output_f, output_samples);
|
||||
|
||||
|
170
audio/test/snr.c
170
audio/test/snr.c
@ -33,7 +33,9 @@
|
||||
|
||||
static void gen_signal(float *out, double omega, double bias_samples, size_t samples)
|
||||
{
|
||||
for (size_t i = 0; i < samples; i += 2)
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < samples; i += 2)
|
||||
{
|
||||
out[i + 0] = cos(((i >> 1) + bias_samples) * omega);
|
||||
out[i + 1] = out[i + 0];
|
||||
@ -60,21 +62,26 @@ static unsigned bitrange(unsigned len)
|
||||
|
||||
static unsigned bitswap(unsigned i, unsigned range)
|
||||
{
|
||||
unsigned shifts;
|
||||
unsigned ret = 0;
|
||||
for (unsigned shifts = 0; shifts < range; shifts++)
|
||||
|
||||
for (shifts = 0; shifts < range; shifts++)
|
||||
ret |= i & (1 << (range - shifts - 1)) ? (1 << shifts) : 0;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
// When interleaving the butterfly buffer, addressing puts bits in reverse.
|
||||
// [0, 1, 2, 3, 4, 5, 6, 7] => [0, 4, 2, 6, 1, 5, 3, 7]
|
||||
/* When interleaving the butterfly buffer, addressing puts bits in reverse.
|
||||
* [0, 1, 2, 3, 4, 5, 6, 7] => [0, 4, 2, 6, 1, 5, 3, 7] */
|
||||
static void interleave(complex double *butterfly_buf, size_t samples)
|
||||
{
|
||||
unsigned i;
|
||||
unsigned range = bitrange(samples);
|
||||
for (unsigned i = 0; i < samples; i++)
|
||||
|
||||
for (i = 0; i < samples; i++)
|
||||
{
|
||||
unsigned target = bitswap(i, range);
|
||||
|
||||
if (target > i)
|
||||
{
|
||||
complex double tmp = butterfly_buf[target];
|
||||
@ -91,58 +98,68 @@ static complex double gen_phase(double index)
|
||||
|
||||
static void butterfly(complex double *a, complex double *b, complex double mod)
|
||||
{
|
||||
complex double a_;
|
||||
complex double b_;
|
||||
|
||||
mod *= *b;
|
||||
complex double a_ = *a + mod;
|
||||
complex double b_ = *a - mod;
|
||||
*a = a_;
|
||||
*b = b_;
|
||||
a_ = *a + mod;
|
||||
b_ = *a - mod;
|
||||
*a = a_;
|
||||
*b = b_;
|
||||
}
|
||||
|
||||
static void butterflies(complex double *butterfly_buf, double phase_dir, size_t step_size, size_t samples)
|
||||
{
|
||||
for (unsigned i = 0; i < samples; i += 2 * step_size)
|
||||
for (unsigned j = i; j < i + step_size; j++)
|
||||
unsigned i, j;
|
||||
|
||||
for (i = 0; i < samples; i += 2 * step_size)
|
||||
for (j = i; j < i + step_size; j++)
|
||||
butterfly(&butterfly_buf[j], &butterfly_buf[j + step_size], gen_phase((phase_dir * (j - i)) / step_size));
|
||||
}
|
||||
|
||||
static void calculate_fft(const float *data, complex double *butterfly_buf, size_t samples)
|
||||
{
|
||||
// Enforce POT.
|
||||
unsigned i;
|
||||
|
||||
/* Enforce POT. */
|
||||
assert((samples & (samples - 1)) == 0);
|
||||
|
||||
for (unsigned i = 0; i < samples; i++)
|
||||
for (i = 0; i < samples; i++)
|
||||
butterfly_buf[i] = data[2 * i];
|
||||
|
||||
// Interleave buffer to work with FFT.
|
||||
/* Interleave buffer to work with FFT. */
|
||||
interleave(butterfly_buf, samples);
|
||||
|
||||
// Fly, lovely butterflies! :D
|
||||
/* Fly, lovely butterflies! :D */
|
||||
for (unsigned step_size = 1; step_size < samples; step_size *= 2)
|
||||
butterflies(butterfly_buf, -1.0, step_size, samples);
|
||||
}
|
||||
|
||||
static void calculate_fft_adjust(complex double *butterfly_buf, double gain, bool merge_high, size_t samples)
|
||||
{
|
||||
unsigned i;
|
||||
if (merge_high)
|
||||
{
|
||||
for (unsigned i = 1; i < samples / 2; i++)
|
||||
for (i = 1; i < samples / 2; i++)
|
||||
butterfly_buf[i] *= 2.0;
|
||||
}
|
||||
|
||||
// Normalize amplitudes.
|
||||
for (unsigned i = 0; i < samples; i++)
|
||||
/* Normalize amplitudes. */
|
||||
for (i = 0; i < samples; i++)
|
||||
butterfly_buf[i] *= gain;
|
||||
}
|
||||
|
||||
static void calculate_ifft(complex double *butterfly_buf, size_t samples, bool normalize)
|
||||
{
|
||||
// Enforce POT.
|
||||
unsigned step_size;
|
||||
|
||||
/* Enforce POT. */
|
||||
assert((samples & (samples - 1)) == 0);
|
||||
|
||||
interleave(butterfly_buf, samples);
|
||||
|
||||
// Fly, lovely butterflies! In opposite direction! :D
|
||||
for (unsigned step_size = 1; step_size < samples; step_size *= 2)
|
||||
/* Fly, lovely butterflies! In opposite direction! :D */
|
||||
for (step_size = 1; step_size < samples; step_size *= 2)
|
||||
butterflies(butterfly_buf, 1.0, step_size, samples);
|
||||
|
||||
if (normalize)
|
||||
@ -151,25 +168,25 @@ static void calculate_ifft(complex double *butterfly_buf, size_t samples, bool n
|
||||
|
||||
static void test_fft(void)
|
||||
{
|
||||
fprintf(stderr, "Sanity checking FFT ...\n");
|
||||
unsigned i, j;
|
||||
float signal[32];
|
||||
complex double butterfly_buf[16];
|
||||
complex double buf_tmp[16];
|
||||
|
||||
const float cos_freqs[] = {
|
||||
1.0, 4.0, 6.0,
|
||||
};
|
||||
|
||||
const float sin_freqs[] = {
|
||||
-2.0, 5.0, 7.0,
|
||||
};
|
||||
|
||||
for (unsigned i = 0; i < 16; i++)
|
||||
fprintf(stderr, "Sanity checking FFT ...\n");
|
||||
|
||||
for (i = 0; i < 16; i++)
|
||||
{
|
||||
signal[2 * i] = 0.0;
|
||||
for (unsigned j = 0; j < sizeof(cos_freqs) / sizeof(cos_freqs[0]); j++)
|
||||
for (j = 0; j < sizeof(cos_freqs) / sizeof(cos_freqs[0]); j++)
|
||||
signal[2 * i] += cos(2.0 * M_PI * i * cos_freqs[j] / 16.0);
|
||||
for (unsigned j = 0; j < sizeof(sin_freqs) / sizeof(sin_freqs[0]); j++)
|
||||
for ( j = 0; j < sizeof(sin_freqs) / sizeof(sin_freqs[0]); j++)
|
||||
signal[2 * i] += sin(2.0 * M_PI * i * sin_freqs[j] / 16.0);
|
||||
}
|
||||
|
||||
@ -178,26 +195,27 @@ static void test_fft(void)
|
||||
calculate_fft_adjust(buf_tmp, 1.0 / 16, true, 16);
|
||||
|
||||
fprintf(stderr, "FFT: { ");
|
||||
for (unsigned i = 0; i < 7; i++)
|
||||
for (i = 0; i < 7; i++)
|
||||
fprintf(stderr, "(%4.2lf, %4.2lf), ", creal(buf_tmp[i]), cimag(buf_tmp[i]));
|
||||
fprintf(stderr, "(%4.2lf, %4.2lf) }\n", creal(buf_tmp[7]), cimag(buf_tmp[7]));
|
||||
|
||||
calculate_ifft(butterfly_buf, 16, true);
|
||||
|
||||
fprintf(stderr, "Original: { ");
|
||||
for (unsigned i = 0; i < 15; i++)
|
||||
for (i = 0; i < 15; i++)
|
||||
fprintf(stderr, "%5.2f, ", signal[2 * i]);
|
||||
fprintf(stderr, "%5.2f }\n", signal[2 * 15]);
|
||||
|
||||
fprintf(stderr, "FFT => IFFT: { ");
|
||||
for (unsigned i = 0; i < 15; i++)
|
||||
for ( i = 0; i < 15; i++)
|
||||
fprintf(stderr, "%5.2lf, ", creal(butterfly_buf[i]));
|
||||
fprintf(stderr, "%5.2lf }\n", creal(butterfly_buf[15]));
|
||||
}
|
||||
|
||||
static void set_alias_power(struct snr_result *res, unsigned freq, double power)
|
||||
{
|
||||
for (unsigned i = 0; i < 3; i++)
|
||||
unsigned i;
|
||||
for (i = 0; i < 3; i++)
|
||||
{
|
||||
if (power >= res->alias_power[i])
|
||||
{
|
||||
@ -212,21 +230,24 @@ static void set_alias_power(struct snr_result *res, unsigned freq, double power)
|
||||
|
||||
static void calculate_snr(struct snr_result *res,
|
||||
unsigned in_rate, unsigned max_rate,
|
||||
const float *resamp, complex double *butterfly_buf, size_t samples)
|
||||
const float *resamp, complex double *butterfly_buf,
|
||||
size_t samples)
|
||||
{
|
||||
unsigned i;
|
||||
double signal;
|
||||
double noise = 0.0;
|
||||
|
||||
samples >>= 1;
|
||||
calculate_fft(resamp, butterfly_buf, samples);
|
||||
calculate_fft_adjust(butterfly_buf, 1.0 / samples, true, samples);
|
||||
|
||||
memset(res, 0, sizeof(*res));
|
||||
|
||||
double signal = cabs(butterfly_buf[in_rate] * butterfly_buf[in_rate]);
|
||||
signal = cabs(butterfly_buf[in_rate] * butterfly_buf[in_rate]);
|
||||
butterfly_buf[in_rate] = 0.0;
|
||||
|
||||
double noise = 0.0;
|
||||
|
||||
// Aliased frequencies above half the original sampling rate are not considered.
|
||||
for (unsigned i = 0; i <= max_rate; i++)
|
||||
/* Aliased frequencies above half the original sampling rate are not considered. */
|
||||
for (i = 0; i <= max_rate; i++)
|
||||
{
|
||||
double power = cabs(butterfly_buf[i] * butterfly_buf[i]);
|
||||
set_alias_power(res, i, power);
|
||||
@ -236,25 +257,12 @@ static void calculate_snr(struct snr_result *res,
|
||||
res->snr = 10.0 * log10(signal / noise);
|
||||
res->gain = 10.0 * log10(signal);
|
||||
|
||||
for (unsigned i = 0; i < 3; i++)
|
||||
for (i = 0; i < 3; i++)
|
||||
res->alias_power[i] = 10.0 * log10(res->alias_power[i]);
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
if (argc != 2)
|
||||
{
|
||||
fprintf(stderr, "Usage: %s <ratio> (out-rate is fixed for FFT).\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
double ratio = strtod(argv[1], NULL);
|
||||
|
||||
const unsigned fft_samples = 1024 * 128;
|
||||
unsigned out_rate = fft_samples / 2;
|
||||
unsigned in_rate = round(out_rate / ratio);
|
||||
ratio = (double)out_rate / in_rate;
|
||||
|
||||
static const float freq_list[] = {
|
||||
0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009,
|
||||
0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, 0.050,
|
||||
@ -265,38 +273,63 @@ int main(int argc, char *argv[])
|
||||
0.495, 0.496, 0.497, 0.498, 0.499,
|
||||
};
|
||||
|
||||
unsigned samples = in_rate * 4;
|
||||
float *input = calloc(sizeof(float), samples);
|
||||
float *output = calloc(sizeof(float), (fft_samples + 16) * 2);
|
||||
complex double *butterfly_buf = calloc(sizeof(complex double), fft_samples / 2);
|
||||
unsigned out_rate, in_rate, samples, i;
|
||||
double ratio;
|
||||
float *input, *output;
|
||||
complex double *butterfly_buf;
|
||||
const rarch_resampler_t *resampler = NULL;
|
||||
const unsigned fft_samples = 1024 * 128;
|
||||
void *re = NULL;
|
||||
|
||||
if (argc != 2)
|
||||
{
|
||||
fprintf(stderr, "Usage: %s <ratio> (out-rate is fixed for FFT).\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
ratio = strtod(argv[1], NULL);
|
||||
out_rate = fft_samples / 2;
|
||||
in_rate = round(out_rate / ratio);
|
||||
ratio = (double)out_rate / in_rate;
|
||||
|
||||
samples = in_rate * 4;
|
||||
input = calloc(sizeof(float), samples);
|
||||
output = calloc(sizeof(float), (fft_samples + 16) * 2);
|
||||
butterfly_buf = calloc(sizeof(complex double), fft_samples / 2);
|
||||
|
||||
assert(input);
|
||||
assert(output);
|
||||
|
||||
void *re = NULL;
|
||||
const rarch_resampler_t *resampler = NULL;
|
||||
if (!rarch_resampler_realloc(&re, &resampler, RESAMPLER_IDENT, ratio))
|
||||
{
|
||||
free(input);
|
||||
free(output);
|
||||
free(butterfly_buf);
|
||||
return 1;
|
||||
}
|
||||
|
||||
test_fft();
|
||||
|
||||
for (unsigned i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]); i++)
|
||||
for (i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]); i++)
|
||||
{
|
||||
struct resampler_data data;
|
||||
unsigned max_freq;
|
||||
struct snr_result res = {0};
|
||||
unsigned freq = freq_list[i] * in_rate;
|
||||
double omega = 2.0 * M_PI * freq / in_rate;
|
||||
double omega = 2.0 * M_PI * freq / in_rate;
|
||||
|
||||
gen_signal(input, omega, 0, samples);
|
||||
|
||||
struct resampler_data data = {
|
||||
.data_in = input,
|
||||
.data_out = output,
|
||||
.input_frames = in_rate * 2,
|
||||
.ratio = ratio,
|
||||
};
|
||||
data.data_in = input;
|
||||
data.data_out = output;
|
||||
data.input_frames = in_rate * 2;
|
||||
data.ratio = ratio;
|
||||
|
||||
rarch_resampler_process(resampler, re, &data);
|
||||
|
||||
// We generate 2 seconds worth of audio, however, only the last second is considered so phase has stabilized.
|
||||
struct snr_result res = {0};
|
||||
unsigned max_freq = min(in_rate, out_rate) / 2;
|
||||
/* We generate 2 seconds worth of audio, however,
|
||||
* only the last second is considered so phase has stabilized. */
|
||||
max_freq = min(in_rate, out_rate) / 2;
|
||||
if (freq > max_freq)
|
||||
continue;
|
||||
|
||||
@ -312,6 +345,7 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
|
||||
rarch_resampler_freep(&resampler, &re);
|
||||
|
||||
free(input);
|
||||
free(output);
|
||||
free(butterfly_buf);
|
||||
|
@ -473,18 +473,19 @@ database_info_list_t *database_info_list_new(
|
||||
|
||||
if (ret == 0)
|
||||
{
|
||||
database_info_t *db_ptr = NULL;
|
||||
database_info = (database_info_t*)
|
||||
database_info_t *db_ptr = NULL;
|
||||
database_info_t *new_ptr = (database_info_t*)
|
||||
realloc(database_info, (k+1) * sizeof(database_info_t));
|
||||
|
||||
if (!database_info)
|
||||
if (!new_ptr)
|
||||
{
|
||||
database_info_list_free(database_info_list);
|
||||
database_info_list = NULL;
|
||||
goto end;
|
||||
}
|
||||
|
||||
db_ptr = &database_info[k];
|
||||
database_info = new_ptr;
|
||||
db_ptr = &database_info[k];
|
||||
|
||||
if (!db_ptr)
|
||||
continue;
|
||||
|
2
deps/zlib/gzread.c
vendored
2
deps/zlib/gzread.c
vendored
@ -249,7 +249,7 @@ local int gz_fetch(gz_statep state)
|
||||
/* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */
|
||||
local int gz_skip(gz_statep state, z_off64_t len)
|
||||
{
|
||||
unsigned n;
|
||||
unsigned n = 0;
|
||||
|
||||
/* skip over len bytes or reach end-of-file, whichever comes first */
|
||||
while (len)
|
||||
|
2
deps/zlib/gzwrite.c
vendored
2
deps/zlib/gzwrite.c
vendored
@ -132,7 +132,7 @@ local int gz_comp(gz_statep state, int flush)
|
||||
local int gz_zero(gz_statep state, z_off64_t len)
|
||||
{
|
||||
int first;
|
||||
unsigned n;
|
||||
unsigned n = 0;
|
||||
z_streamp strm = &(state->strm);
|
||||
|
||||
/* consume whatever's left in the input buffer */
|
||||
|
@ -653,7 +653,8 @@ static bool d3d_construct(d3d_video_t *d3d,
|
||||
}
|
||||
|
||||
video_monitor_get_fps(buffer, sizeof(buffer), NULL, 0);
|
||||
sprintf(buffer, "%s || Direct3D", buffer);
|
||||
|
||||
strlcat(buffer, " || Direct3D", sizeof(buffer));
|
||||
|
||||
d3d->hWnd = CreateWindowEx(0, "RetroArch", buffer,
|
||||
info->fullscreen ?
|
||||
|
@ -465,6 +465,13 @@ void init_video(void)
|
||||
|
||||
if (av_info)
|
||||
geom = (const struct retro_game_geometry*)&av_info->geometry;
|
||||
|
||||
if (!geom)
|
||||
{
|
||||
RARCH_ERR("AV geometry not initialized, cannot initialize video driver.\n");
|
||||
rarch_fail(1, "init_video()");
|
||||
}
|
||||
|
||||
max_dim = max(geom->max_width, geom->max_height);
|
||||
scale = next_pow2(max_dim) / RARCH_SCALE_BASE;
|
||||
scale = max(scale, 1);
|
||||
@ -621,7 +628,7 @@ void video_driver_set_nonblock_state(bool toggle)
|
||||
driver_t *driver = driver_get_ptr();
|
||||
const video_driver_t *video = video_driver_ctx_get_ptr(driver);
|
||||
|
||||
if (video->set_nonblock_state)
|
||||
if (video && video->set_nonblock_state)
|
||||
video->set_nonblock_state(driver->video_data, toggle);
|
||||
}
|
||||
|
||||
@ -631,7 +638,7 @@ bool video_driver_set_viewport(unsigned width, unsigned height,
|
||||
driver_t *driver = driver_get_ptr();
|
||||
const video_driver_t *video = video_driver_ctx_get_ptr(driver);
|
||||
|
||||
if (video->set_viewport)
|
||||
if (video && video->set_viewport)
|
||||
{
|
||||
video->set_viewport(driver->video_data, width, height,
|
||||
force_fullscreen, allow_rotate);
|
||||
@ -645,7 +652,7 @@ bool video_driver_set_rotation(unsigned rotation)
|
||||
driver_t *driver = driver_get_ptr();
|
||||
const video_driver_t *video = video_driver_ctx_get_ptr(driver);
|
||||
|
||||
if (video->set_rotation)
|
||||
if (video && video->set_rotation)
|
||||
{
|
||||
video->set_rotation(driver->video_data, rotation);
|
||||
return true;
|
||||
@ -736,7 +743,7 @@ bool video_driver_viewport_info(struct video_viewport *vp)
|
||||
driver_t *driver = driver_get_ptr();
|
||||
const video_driver_t *video = video_driver_ctx_get_ptr(driver);
|
||||
|
||||
if (video->viewport_info)
|
||||
if (video && video->viewport_info)
|
||||
{
|
||||
video->viewport_info(driver->video_data, vp);
|
||||
return true;
|
||||
@ -749,7 +756,7 @@ bool video_driver_read_viewport(uint8_t *buffer)
|
||||
driver_t *driver = driver_get_ptr();
|
||||
const video_driver_t *video = video_driver_ctx_get_ptr(driver);
|
||||
|
||||
if (video->read_viewport)
|
||||
if (video && video->read_viewport)
|
||||
return video->read_viewport(driver->video_data,
|
||||
buffer);
|
||||
return false;
|
||||
@ -778,13 +785,13 @@ bool video_driver_overlay_interface(const video_overlay_interface_t **iface)
|
||||
}
|
||||
#endif
|
||||
|
||||
void * video_driver_read_frame_raw(unsigned *width,
|
||||
void *video_driver_read_frame_raw(unsigned *width,
|
||||
unsigned *height, size_t *pitch)
|
||||
{
|
||||
driver_t *driver = driver_get_ptr();
|
||||
const video_driver_t *video = video_driver_ctx_get_ptr(driver);
|
||||
|
||||
if (video->read_frame_raw)
|
||||
if (video && video->read_frame_raw)
|
||||
return video->read_frame_raw(driver->video_data, width,
|
||||
height, pitch);
|
||||
return NULL;
|
||||
@ -930,7 +937,7 @@ void video_monitor_adjust_system_rates(void)
|
||||
if (av_info)
|
||||
info = (const struct retro_system_timing*)&av_info->timing;
|
||||
|
||||
if (info->fps <= 0.0)
|
||||
if (!info || info->fps <= 0.0)
|
||||
return;
|
||||
|
||||
timing_skew = fabs(1.0f - info->fps / settings->video.refresh_rate);
|
||||
|
@ -53,6 +53,9 @@ void handle_xkb(
|
||||
if (value)
|
||||
num_syms = xkb_state_key_get_syms(xkb_state, xk_code, &syms);
|
||||
|
||||
if (!syms)
|
||||
return;
|
||||
|
||||
xkb_state_update_key(xkb_state, xk_code, value ? XKB_KEY_DOWN : XKB_KEY_UP);
|
||||
|
||||
/* Build mod state. */
|
||||
|
@ -41,7 +41,7 @@ static int call_init(lua_State * L, int argc, const char ** argv)
|
||||
|
||||
static int value_provider(void * ctx, struct rmsgpack_dom_value *out)
|
||||
{
|
||||
int rv;
|
||||
int rv = 0;
|
||||
lua_State * L = ctx;
|
||||
|
||||
lua_getglobal(L, "get_value");
|
||||
|
@ -59,7 +59,7 @@ static void push_rmsgpack_value(lua_State *L, struct rmsgpack_dom_value *value)
|
||||
|
||||
static int value_provider(void *ctx, struct rmsgpack_dom_value *out)
|
||||
{
|
||||
int rv;
|
||||
int rv = 0;
|
||||
lua_State *L = ctx;
|
||||
|
||||
lua_getfield(L, LUA_REGISTRYINDEX, "testlib_get_value");
|
||||
|
Loading…
x
Reference in New Issue
Block a user