glslang/README.md
Lei Zhang 414eb60482 Link in Google Test framework.
The existing test harness is a homemade shell script. All the tests
and the expected results are written in plain text files. The harness
just reads in a test, invoke the glslangValidator binary on it, and
compare the result with the golden file. All tests are kinda
integration tests.

This patch add Google Test as an external project, which provides a
new harness for reading shader source files, compile to SPIR-V, and
then compare with the expected output.
2016-03-31 10:31:30 -04:00

196 lines
7.2 KiB
Markdown

Also see the Khronos landing page for glslang as a reference front end:
https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/
The above page includes where to get binaries, and is kept up to date
regarding the feature level of glslang.
glslang
=======
An OpenGL and OpenGL ES shader front end and validator.
There are two components:
1. A front-end library for programmatic parsing of GLSL/ESSL into an AST.
2. A standalone wrapper, `glslangValidator`, that can be used as a shader
validation tool.
How to add a feature protected by a version/extension/stage/profile: See the
comment in `glslang/MachineIndependent/Versions.cpp`.
Things left to do: See `Todo.txt`
Execution of Standalone Wrapper
-------------------------------
To use the standalone binary form, execute `glslangValidator`, and it will print
a usage statement. Basic operation is to give it a file containing a shader,
and it will print out warnings/errors and optionally an AST.
The applied stage-specific rules are based on the file extension:
* `.vert` for a vertex shader
* `.tesc` for a tessellation control shader
* `.tese` for a tessellation evaluation shader
* `.geom` for a geometry shader
* `.frag` for a fragment shader
* `.comp` for a compute shader
There is also a non-shader extension
* `.conf` for a configuration file of limits, see usage statement for example
Building
--------
CMake: The currently maintained and preferred way of building is through CMake.
In MSVC, after running CMake, you may need to use the Configuration Manager to
check the INSTALL project.
The grammar in glslang/MachineIndependent/glslang.y has to be recompiled with
bison if it changes, the output files are committed to the repo to avoid every
developer needing to have bison configured to compile the project when grammar
changes are quite infrequent. For windows you can get binaries from
[GnuWin32](http://gnuwin32.sourceforge.net/packages/bison.htm).
The command to rebuild is:
```
bison --defines=MachineIndependent/glslang_tab.cpp.h
-t MachineIndependent/glslang.y
-o MachineIndependent/glslang_tab.cpp
```
Glslang is adding the ability to test with
[Google Test](https://github.com/google/googletest) framework. If you want to
build and run those tests, please make sure you have a copy of Google Tests
checked out in the `External/` directory:
`git clone https://github.com/google/googletest.git`.
Programmatic Interfaces
-----------------------
Another piece of software can programmatically translate shaders to an AST
using one of two different interfaces:
* A new C++ class-oriented interface, or
* The original C functional interface
The `main()` in `StandAlone/StandAlone.cpp` shows examples using both styles.
### C++ Class Interface (new, preferred)
This interface is in roughly the last 1/3 of `ShaderLang.h`. It is in the
glslang namespace and contains the following.
```cxx
const char* GetEsslVersionString();
const char* GetGlslVersionString();
bool InitializeProcess();
void FinalizeProcess();
class TShader
bool parse(...);
void setStrings(...);
const char* getInfoLog();
class TProgram
void addShader(...);
bool link(...);
const char* getInfoLog();
Reflection queries
```
See `ShaderLang.h` and the usage of it in `StandAlone/StandAlone.cpp` for more
details.
### C Functional Interface (orginal)
This interface is in roughly the first 2/3 of `ShaderLang.h`, and referred to
as the `Sh*()` interface, as all the entry points start `Sh`.
The `Sh*()` interface takes a "compiler" call-back object, which it calls after
building call back that is passed the AST and can then execute a backend on it.
The following is a simplified resulting run-time call stack:
```c
ShCompile(shader, compiler) -> compiler(AST) -> <back end>
```
In practice, `ShCompile()` takes shader strings, default version, and
warning/error and other options for controling compilation.
Testing
-------
Test results should always be included with a pull request that modifies
functionality. And since glslang is adding the ability to test with
[Google Test](https://github.com/google/googletest) framework,
please write your new tests using Google Test.
The old (deprecated) testing process is:
`Test` is an active test directory that contains test input and a
subdirectory `baseResults` that contains the expected results of the
tests. Both the tests and `baseResults` are under source-code control.
Executing the script `./runtests` will generate current results in
the `localResults` directory and `diff` them against the `baseResults`.
When you want to update the tracked test results, they need to be
copied from `localResults` to `baseResults`. This can be done by
the `bump` shell script.
The list of files tested comes from `testlist`, and lists input shaders
in this directory, which must all be public for this to work. However,
you can add your own private list of tests, not tracked here, by using
`localtestlist` to list non-tracked tests. This is automatically read
by `runtests` and included in the `diff` and `bump` process.
Basic Internal Operation
------------------------
* Initial lexical analysis is done by the preprocessor in
`MachineIndependent/Preprocessor`, and then refined by a GLSL scanner
in `MachineIndependent/Scan.cpp`. There is currently no use of flex.
* Code is parsed using bison on `MachineIndependent/glslang.y` with the
aid of a symbol table and an AST. The symbol table is not passed on to
the back-end; the intermediate representation stands on its own.
The tree is built by the grammar productions, many of which are
offloaded into `ParseHelper.cpp`, and by `Intermediate.cpp`.
* The intermediate representation is very high-level, and represented
as an in-memory tree. This serves to lose no information from the
original program, and to have efficient transfer of the result from
parsing to the back-end. In the AST, constants are propogated and
folded, and a very small amount of dead code is eliminated.
To aid linking and reflection, the last top-level branch in the AST
lists all global symbols.
* The primary algorithm of the back-end compiler is to traverse the
tree (high-level intermediate representation), and create an internal
object code representation. There is an example of how to do this
in `MachineIndependent/intermOut.cpp`.
* Reduction of the tree to a linear byte-code style low-level intermediate
representation is likely a good way to generate fully optimized code.
* There is currently some dead old-style linker-type code still lying around.
* Memory pool: parsing uses types derived from C++ `std` types, using a
custom allocator that puts them in a memory pool. This makes allocation
of individual container/contents just few cycles and deallocation free.
This pool is popped after the AST is made and processed.
The use is simple: if you are going to call `new`, there are three cases:
- the object comes from the pool (its base class has the macro
`POOL_ALLOCATOR_NEW_DELETE` in it) and you do not have to call `delete`
- it is a `TString`, in which case call `NewPoolTString()`, which gets
it from the pool, and there is no corresponding `delete`
- the object does not come from the pool, and you have to do normal
C++ memory management of what you `new`