mirror of
https://github.com/libretro/ppsspp.git
synced 2024-12-11 02:15:39 +00:00
4d18a0a9b5
And fix missing bgm and voice issue for 7th Dragon 2020.
322 lines
9.9 KiB
C++
322 lines
9.9 KiB
C++
// Copyright (c) 2012- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include "__sceAudio.h"
|
|
#include "sceAudio.h"
|
|
#include "sceKernel.h"
|
|
#include "sceKernelThread.h"
|
|
#include "base/mutex.h"
|
|
#include "CommonTypes.h"
|
|
#include "../CoreTiming.h"
|
|
#include "../MemMap.h"
|
|
#include "../Host.h"
|
|
#include "../Config.h"
|
|
#include "ChunkFile.h"
|
|
#include "FixedSizeQueue.h"
|
|
#include "Common/Thread.h"
|
|
|
|
// Should be used to lock anything related to the outAudioQueue.
|
|
recursive_mutex section;
|
|
|
|
int eventAudioUpdate = -1;
|
|
int eventHostAudioUpdate = -1;
|
|
int mixFrequency = 44100;
|
|
|
|
const int hwSampleRate = 44100;
|
|
const int hwBlockSize = 64;
|
|
const int hostAttemptBlockSize = 512;
|
|
const int audioIntervalUs = (int)(1000000ULL * hwBlockSize / hwSampleRate);
|
|
const int audioHostIntervalUs = (int)(1000000ULL * hostAttemptBlockSize / hwSampleRate);
|
|
|
|
// High and low watermarks, basically. For perfect emulation, the correct values are 0 and 1, respectively.
|
|
// TODO: Tweak
|
|
const int chanQueueMaxSizeFactor = 2;
|
|
const int chanQueueMinSizeFactor = 1;
|
|
|
|
FixedSizeQueue<s16, hostAttemptBlockSize * 16> outAudioQueue;
|
|
|
|
static inline s16 clamp_s16(int i) {
|
|
if (i > 32767)
|
|
return 32767;
|
|
if (i < -32768)
|
|
return -32768;
|
|
return i;
|
|
}
|
|
|
|
static inline s16 adjustvolume(s16 sample, int vol) {
|
|
return clamp_s16((sample * vol) >> 15);
|
|
}
|
|
|
|
void hleAudioUpdate(u64 userdata, int cyclesLate)
|
|
{
|
|
__AudioUpdate();
|
|
|
|
CoreTiming::ScheduleEvent(usToCycles(audioIntervalUs) - cyclesLate, eventAudioUpdate, 0);
|
|
}
|
|
|
|
void hleHostAudioUpdate(u64 userdata, int cyclesLate)
|
|
{
|
|
host->UpdateSound();
|
|
CoreTiming::ScheduleEvent(usToCycles(audioHostIntervalUs) - cyclesLate, eventHostAudioUpdate, 0);
|
|
}
|
|
|
|
void __AudioInit()
|
|
{
|
|
mixFrequency = 44100;
|
|
|
|
eventAudioUpdate = CoreTiming::RegisterEvent("AudioUpdate", &hleAudioUpdate);
|
|
eventHostAudioUpdate = CoreTiming::RegisterEvent("AudioUpdateHost", &hleHostAudioUpdate);
|
|
|
|
CoreTiming::ScheduleEvent(usToCycles(audioIntervalUs), eventAudioUpdate, 0);
|
|
CoreTiming::ScheduleEvent(usToCycles(audioHostIntervalUs), eventHostAudioUpdate, 0);
|
|
for (u32 i = 0; i < PSP_AUDIO_CHANNEL_MAX + 1; i++)
|
|
chans[i].clear();
|
|
}
|
|
|
|
void __AudioDoState(PointerWrap &p)
|
|
{
|
|
p.Do(eventAudioUpdate);
|
|
CoreTiming::RestoreRegisterEvent(eventAudioUpdate, "AudioUpdate", &hleAudioUpdate);
|
|
p.Do(eventHostAudioUpdate);
|
|
CoreTiming::RestoreRegisterEvent(eventHostAudioUpdate, "AudioUpdateHost", &hleHostAudioUpdate);
|
|
|
|
p.Do(mixFrequency);
|
|
|
|
{
|
|
lock_guard guard(section);
|
|
outAudioQueue.DoState(p);
|
|
}
|
|
|
|
int chanCount = ARRAY_SIZE(chans);
|
|
p.Do(chanCount);
|
|
if (chanCount != ARRAY_SIZE(chans))
|
|
{
|
|
ERROR_LOG(HLE, "Savestate failure: different number of audio channels.");
|
|
return;
|
|
}
|
|
for (int i = 0; i < chanCount; ++i)
|
|
chans[i].DoState(p);
|
|
|
|
p.DoMarker("sceAudio");
|
|
}
|
|
|
|
void __AudioShutdown()
|
|
{
|
|
for (u32 i = 0; i < PSP_AUDIO_CHANNEL_MAX + 1; i++)
|
|
chans[i].clear();
|
|
}
|
|
|
|
u32 __AudioEnqueue(AudioChannel &chan, int chanNum, bool blocking)
|
|
{
|
|
u32 ret = chan.sampleCount;
|
|
|
|
if (chan.sampleAddress == 0) {
|
|
// For some reason, multichannel audio lies and returns the sample count here.
|
|
if (chanNum == PSP_AUDIO_CHANNEL_SRC || chanNum == PSP_AUDIO_CHANNEL_OUTPUT2) {
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
// If there's anything on the queue at all, it should be busy, but we try to be a bit lax.
|
|
//if (chan.sampleQueue.size() > chan.sampleCount * 2 * chanQueueMaxSizeFactor || chan.sampleAddress == 0) {
|
|
if (chan.sampleQueue.size() > 0 || chan.sampleAddress == 0) {
|
|
if (blocking) {
|
|
// TODO: Regular multichannel audio seems to block for 64 samples less? Or enqueue the first 64 sync?
|
|
int blockSamples = (int)chan.sampleQueue.size() / 2 / chanQueueMinSizeFactor;
|
|
|
|
AudioChannelWaitInfo waitInfo = {__KernelGetCurThread(), blockSamples};
|
|
chan.waitingThreads.push_back(waitInfo);
|
|
// Also remember the value to return in the waitValue.
|
|
__KernelWaitCurThread(WAITTYPE_AUDIOCHANNEL, (SceUID)chanNum + 1, ret, 0, false, "blocking audio waited");
|
|
|
|
// Fall through to the sample queueing, don't want to lose the samples even though
|
|
// we're getting full. The PSP would enqueue after blocking.
|
|
} else {
|
|
// Non-blocking doesn't even enqueue, but it's not commonly used.
|
|
return SCE_ERROR_AUDIO_CHANNEL_BUSY;
|
|
}
|
|
}
|
|
|
|
if (chan.sampleAddress == 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (chan.format == PSP_AUDIO_FORMAT_STEREO)
|
|
{
|
|
const u32 totalSamples = chan.sampleCount * 2;
|
|
|
|
if (IS_LITTLE_ENDIAN)
|
|
{
|
|
s16 *sampleData = (s16 *) Memory::GetPointer(chan.sampleAddress);
|
|
|
|
// Walking a pointer for speed. But let's make sure we wouldn't trip on an invalid ptr.
|
|
if (Memory::IsValidAddress(chan.sampleAddress + (totalSamples - 1) * sizeof(s16)))
|
|
{
|
|
for (u32 i = 0; i < totalSamples; i += 2) {
|
|
chan.sampleQueue.push(adjustvolume(*sampleData++, chan.leftVolume));
|
|
chan.sampleQueue.push(adjustvolume(*sampleData++, chan.rightVolume));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (u32 i = 0; i < totalSamples; i++) {
|
|
s16 sampleL = (s16)Memory::Read_U16(chan.sampleAddress + sizeof(s16) * i);
|
|
sampleL = adjustvolume(sampleL, chan.leftVolume);
|
|
chan.sampleQueue.push(sampleL);
|
|
i++;
|
|
s16 sampleR = (s16)Memory::Read_U16(chan.sampleAddress + sizeof(s16) * i);
|
|
sampleR = adjustvolume(sampleR, chan.rightVolume);
|
|
chan.sampleQueue.push(sampleR);
|
|
}
|
|
}
|
|
}
|
|
else if (chan.format == PSP_AUDIO_FORMAT_MONO)
|
|
{
|
|
for (u32 i = 0; i < chan.sampleCount; i++)
|
|
{
|
|
// Expand to stereo
|
|
s16 sample = (s16)Memory::Read_U16(chan.sampleAddress + 2 * i);
|
|
chan.sampleQueue.push(adjustvolume(sample, chan.leftVolume));
|
|
chan.sampleQueue.push(adjustvolume(sample, chan.rightVolume));
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
inline void __AudioWakeThreads(AudioChannel &chan, int result, int step)
|
|
{
|
|
u32 error;
|
|
for (size_t w = 0; w < chan.waitingThreads.size(); ++w)
|
|
{
|
|
AudioChannelWaitInfo &waitInfo = chan.waitingThreads[w];
|
|
waitInfo.numSamples -= step;
|
|
|
|
// If it's done (there will still be samples on queue) and actually still waiting, wake it up.
|
|
if (waitInfo.numSamples <= 0 && __KernelGetWaitID(waitInfo.threadID, WAITTYPE_AUDIOCHANNEL, error) != 0)
|
|
{
|
|
// DEBUG_LOG(HLE, "Woke thread %i for some buffer filling", waitingThread);
|
|
u32 ret = result == 0 ? __KernelGetWaitValue(waitInfo.threadID, error) : SCE_ERROR_AUDIO_CHANNEL_NOT_RESERVED;
|
|
__KernelResumeThreadFromWait(waitInfo.threadID, ret);
|
|
|
|
chan.waitingThreads.erase(chan.waitingThreads.begin() + w--);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __AudioWakeThreads(AudioChannel &chan, int result)
|
|
{
|
|
__AudioWakeThreads(chan, result, 0x7FFFFFFF);
|
|
}
|
|
|
|
// Mix samples from the various audio channels into a single sample queue.
|
|
// This single sample queue is where __AudioMix should read from. If the sample queue is full, we should
|
|
// just sleep the main emulator thread a little.
|
|
void __AudioUpdate()
|
|
{
|
|
// Audio throttle doesn't really work on the PSP since the mixing intervals are so closely tied
|
|
// to the CPU. Much better to throttle the frame rate on frame display and just throw away audio
|
|
// if the buffer somehow gets full.
|
|
|
|
s32 mixBuffer[hwBlockSize * 2];
|
|
memset(mixBuffer, 0, sizeof(mixBuffer));
|
|
|
|
for (u32 i = 0; i < PSP_AUDIO_CHANNEL_MAX + 1; i++)
|
|
{
|
|
if (!chans[i].reserved)
|
|
continue;
|
|
__AudioWakeThreads(chans[i], 0, hwBlockSize);
|
|
|
|
if (!chans[i].sampleQueue.size()) {
|
|
// ERROR_LOG(HLE, "No queued samples, skipping channel %i", i);
|
|
continue;
|
|
}
|
|
|
|
for (int s = 0; s < hwBlockSize; s++)
|
|
{
|
|
if (chans[i].sampleQueue.size() >= 2)
|
|
{
|
|
s16 sampleL = chans[i].sampleQueue.pop_front();
|
|
s16 sampleR = chans[i].sampleQueue.pop_front();
|
|
mixBuffer[s * 2 + 0] += sampleL;
|
|
mixBuffer[s * 2 + 1] += sampleR;
|
|
}
|
|
else
|
|
{
|
|
ERROR_LOG(HLE, "Channel %i buffer underrun at %i of %i", i, s, hwBlockSize);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (g_Config.bEnableSound) {
|
|
lock_guard guard(section);
|
|
if (outAudioQueue.room() >= hwBlockSize * 2) {
|
|
// Push the mixed samples onto the output audio queue.
|
|
for (int i = 0; i < hwBlockSize; i++) {
|
|
s16 sampleL = clamp_s16(mixBuffer[i * 2 + 0]);
|
|
s16 sampleR = clamp_s16(mixBuffer[i * 2 + 1]);
|
|
|
|
outAudioQueue.push((s16)sampleL);
|
|
outAudioQueue.push((s16)sampleR);
|
|
}
|
|
} else {
|
|
// This happens quite a lot. There's still something slightly off
|
|
// about the amount of audio we produce.
|
|
DEBUG_LOG(HLE, "Audio outbuffer overrun! room = %i / %i", outAudioQueue.room(), (u32)outAudioQueue.capacity());
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void __AudioSetOutputFrequency(int freq)
|
|
{
|
|
WARN_LOG(HLE, "Switching audio frequency to %i", freq);
|
|
mixFrequency = freq;
|
|
}
|
|
|
|
// numFrames is number of stereo frames.
|
|
// This is called from *outside* the emulator thread.
|
|
int __AudioMix(short *outstereo, int numFrames)
|
|
{
|
|
// TODO: if mixFrequency != the actual output frequency, resample!
|
|
lock_guard guard(section);
|
|
int underrun = -1;
|
|
s16 sampleL = 0;
|
|
s16 sampleR = 0;
|
|
bool anythingToPlay = false;
|
|
for (int i = 0; i < numFrames; i++) {
|
|
if (outAudioQueue.size() >= 2) {
|
|
sampleL = outAudioQueue.pop_front();
|
|
sampleR = outAudioQueue.pop_front();
|
|
outstereo[i * 2 + 0] = sampleL;
|
|
outstereo[i * 2 + 1] = sampleR;
|
|
anythingToPlay = true;
|
|
} else {
|
|
if (underrun == -1) underrun = i;
|
|
outstereo[i * 2 + 0] = sampleL; // repeat last sample, can reduce clicking
|
|
outstereo[i * 2 + 1] = sampleR; // repeat last sample, can reduce clicking
|
|
}
|
|
}
|
|
if (anythingToPlay && underrun >= 0) {
|
|
DEBUG_LOG(HLE, "Audio out buffer UNDERRUN at %i of %i", underrun, numFrames);
|
|
} else {
|
|
// DEBUG_LOG(HLE, "No underrun, mixed %i samples fine", numFrames);
|
|
}
|
|
return underrun >= 0 ? underrun : numFrames;
|
|
}
|