ppsspp/GPU/GLES/TransformPipeline.cpp
2014-06-07 16:28:24 -07:00

985 lines
33 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// Ideas for speeding things up on mobile OpenGL ES implementations
//
// Use superbuffers! Yes I just invented that name.
//
// The idea is to avoid respecifying the vertex format between every draw call (multiple glVertexAttribPointer ...)
// by combining the contents of multiple draw calls into one buffer, as long as
// they have exactly the same output vertex format. (different input formats is fine! This way
// we can combine the data for multiple draws with different numbers of bones, as we consider numbones < 4 to be = 4)
// into one VBO.
//
// This will likely be a win because I believe that between every change of VBO + glVertexAttribPointer*N, the driver will
// perform a lot of validation, probably at draw call time, while all the validation can be skipped if the only thing
// that changes between two draw calls is simple state or texture or a matrix etc, not anything vertex related.
// Also the driver will have to manage hundreds instead of thousands of VBOs in games like GTA.
//
// * Every 10 frames or something, do the following:
// - Frame 1:
// + Mark all drawn buffers with in-frame sequence numbers (alternatively,
// just log them in an array)
// - Frame 2 (beginning?):
// + Take adjacent buffers that have the same output vertex format, and add them
// to a list of buffers to combine. Create said buffers with appropriate sizes
// and precompute the offsets that the draws should be written into.
// - Frame 2 (end):
// + Actually do the work of combining the buffers. This probably means re-decoding
// the vertices into a new one. Will also have to apply index offsets.
//
// Also need to change the drawing code so that we don't glBindBuffer and respecify glVAP if
// two subsequent drawcalls come from the same superbuffer.
//
// Or we ignore all of this including vertex caching and simply find a way to do highly optimized vertex streaming,
// like Dolphin is trying to. That will likely never be able to reach the same speed as perfectly optimized
// superbuffers though. For this we will have to JIT the vertex decoder but that's not too hard.
//
// Now, when do we delete superbuffers? Maybe when half the buffers within have been killed?
//
// Another idea for GTA which switches textures a lot while not changing much other state is to use ES 3 Array
// textures, if they are the same size (even if they aren't, might be okay to simply resize the textures to match
// if they're just a multiple of 2 away) or something. Then we'd have to add a W texture coordinate to choose the
// texture within the bound texture array to the vertex data when merging into superbuffers.
//
// There are even more things to try. For games that do matrix palette skinning by quickly switching bones and
// just drawing a few triangles per call (NBA, FF:CC, Tekken 6 etc) we could even collect matrices, upload them
// all at once, writing matrix indices into the vertices in addition to the weights, and then doing a single
// draw call with specially generated shader to draw the whole mesh. This code will be seriously complex though.
#include "base/logging.h"
#include "base/timeutil.h"
#include "Common/MemoryUtil.h"
#include "Core/MemMap.h"
#include "Core/Host.h"
#include "Core/System.h"
#include "Core/Reporting.h"
#include "Core/Config.h"
#include "Core/CoreTiming.h"
#include "native/gfx_es2/gl_state.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/GLES/StateMapping.h"
#include "GPU/GLES/TextureCache.h"
#include "GPU/GLES/TransformPipeline.h"
#include "GPU/GLES/VertexDecoder.h"
#include "GPU/GLES/ShaderManager.h"
#include "GPU/GLES/GLES_GPU.h"
extern const GLuint glprim[8] = {
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN,
GL_TRIANGLES,
// With OpenGL ES we have to expand sprites (rects) into triangles, tripling the data instead of doubling.
// Sigh. OpenGL ES, Y U NO SUPPORT GL_QUADS?
// We can use it on the desktop though, but we don't yet. There we could also use geometry shaders anyway.
};
enum {
VERTEX_BUFFER_MAX = 65536,
DECODED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * 48,
DECODED_INDEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * 20,
TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex)
};
#define QUAD_INDICES_MAX 32768
#define VERTEXCACHE_DECIMATION_INTERVAL 17
#define VERTEXCACHE_NAME_CACHE_SIZE 64
#define VERTEXCACHE_NAME_CACHE_FULL_SIZE 80
enum { VAI_KILL_AGE = 120 };
TransformDrawEngine::TransformDrawEngine()
: decodedVerts_(0),
prevPrim_(GE_PRIM_INVALID),
dec_(0),
lastVType_(-1),
shaderManager_(0),
textureCache_(0),
framebufferManager_(0),
numDrawCalls(0),
vertexCountInDrawCalls(0),
decodeCounter_(0),
uvScale(0),
fboTexBound_(false) {
decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL;
// Allocate nicely aligned memory. Maybe graphics drivers will
// appreciate it.
// All this is a LOT of memory, need to see if we can cut down somehow.
decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE);
decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE);
transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE);
transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
quadIndices_ = new u16[6 * QUAD_INDICES_MAX];
for (int i = 0; i < QUAD_INDICES_MAX; i++) {
quadIndices_[i * 6 + 0] = i * 4;
quadIndices_[i * 6 + 1] = i * 4 + 2;
quadIndices_[i * 6 + 2] = i * 4 + 1;
quadIndices_[i * 6 + 3] = i * 4 + 1;
quadIndices_[i * 6 + 4] = i * 4 + 2;
quadIndices_[i * 6 + 5] = i * 4 + 3;
}
if (g_Config.bPrescaleUV) {
uvScale = new UVScale[MAX_DEFERRED_DRAW_CALLS];
}
indexGen.Setup(decIndex);
decJitCache_ = new VertexDecoderJitCache();
InitDeviceObjects();
register_gl_resource_holder(this);
}
TransformDrawEngine::~TransformDrawEngine() {
DestroyDeviceObjects();
FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE);
FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
delete [] quadIndices_;
unregister_gl_resource_holder(this);
delete decJitCache_;
for (auto iter = decoderMap_.begin(); iter != decoderMap_.end(); iter++) {
delete iter->second;
}
delete [] uvScale;
}
void TransformDrawEngine::InitDeviceObjects() {
if (bufferNameCache_.empty()) {
bufferNameCache_.resize(VERTEXCACHE_NAME_CACHE_SIZE);
glGenBuffers(VERTEXCACHE_NAME_CACHE_SIZE, &bufferNameCache_[0]);
} else {
ERROR_LOG(G3D, "Device objects already initialized!");
}
}
void TransformDrawEngine::DestroyDeviceObjects() {
if (!bufferNameCache_.empty()) {
glDeleteBuffers((GLsizei)bufferNameCache_.size(), &bufferNameCache_[0]);
bufferNameCache_.clear();
}
ClearTrackedVertexArrays();
}
void TransformDrawEngine::GLLost() {
ILOG("TransformDrawEngine::GLLost()");
// The objects have already been deleted.
bufferNameCache_.clear();
ClearTrackedVertexArrays();
InitDeviceObjects();
}
struct GlTypeInfo {
u16 type;
u8 count;
u8 normalized;
};
static const GlTypeInfo GLComp[] = {
{0}, // DEC_NONE,
{GL_FLOAT, 1, GL_FALSE}, // DEC_FLOAT_1,
{GL_FLOAT, 2, GL_FALSE}, // DEC_FLOAT_2,
{GL_FLOAT, 3, GL_FALSE}, // DEC_FLOAT_3,
{GL_FLOAT, 4, GL_FALSE}, // DEC_FLOAT_4,
{GL_BYTE, 4, GL_TRUE}, // DEC_S8_3,
{GL_SHORT, 4, GL_TRUE},// DEC_S16_3,
{GL_UNSIGNED_BYTE, 1, GL_TRUE},// DEC_U8_1,
{GL_UNSIGNED_BYTE, 2, GL_TRUE},// DEC_U8_2,
{GL_UNSIGNED_BYTE, 3, GL_TRUE},// DEC_U8_3,
{GL_UNSIGNED_BYTE, 4, GL_TRUE},// DEC_U8_4,
{GL_UNSIGNED_SHORT, 1, GL_TRUE},// DEC_U16_1,
{GL_UNSIGNED_SHORT, 2, GL_TRUE},// DEC_U16_2,
{GL_UNSIGNED_SHORT, 3, GL_TRUE},// DEC_U16_3,
{GL_UNSIGNED_SHORT, 4, GL_TRUE},// DEC_U16_4,
{GL_UNSIGNED_BYTE, 2, GL_FALSE},// DEC_U8A_2,
{GL_UNSIGNED_SHORT, 2, GL_FALSE},// DEC_U16A_2,
};
static inline void VertexAttribSetup(int attrib, int fmt, int stride, u8 *ptr) {
if (attrib != -1 && fmt) {
const GlTypeInfo &type = GLComp[fmt];
glVertexAttribPointer(attrib, type.count, type.type, type.normalized, stride, ptr);
}
}
// TODO: Use VBO and get rid of the vertexData pointers - with that, we will supply only offsets
static void SetupDecFmtForDraw(LinkedShader *program, const DecVtxFormat &decFmt, u8 *vertexData) {
VertexAttribSetup(ATTR_W1, decFmt.w0fmt, decFmt.stride, vertexData + decFmt.w0off);
VertexAttribSetup(ATTR_W2, decFmt.w1fmt, decFmt.stride, vertexData + decFmt.w1off);
VertexAttribSetup(ATTR_TEXCOORD, decFmt.uvfmt, decFmt.stride, vertexData + decFmt.uvoff);
VertexAttribSetup(ATTR_COLOR0, decFmt.c0fmt, decFmt.stride, vertexData + decFmt.c0off);
VertexAttribSetup(ATTR_COLOR1, decFmt.c1fmt, decFmt.stride, vertexData + decFmt.c1off);
VertexAttribSetup(ATTR_NORMAL, decFmt.nrmfmt, decFmt.stride, vertexData + decFmt.nrmoff);
VertexAttribSetup(ATTR_POSITION, decFmt.posfmt, decFmt.stride, vertexData + decFmt.posoff);
}
VertexDecoder *TransformDrawEngine::GetVertexDecoder(u32 vtype) {
auto iter = decoderMap_.find(vtype);
if (iter != decoderMap_.end())
return iter->second;
VertexDecoder *dec = new VertexDecoder();
dec->SetVertexType(vtype, decJitCache_);
decoderMap_[vtype] = dec;
return dec;
}
void TransformDrawEngine::SetupVertexDecoder(u32 vertType) {
SetupVertexDecoderInternal(vertType);
}
inline void TransformDrawEngine::SetupVertexDecoderInternal(u32 vertType) {
// As the decoder depends on the UVGenMode when we use UV prescale, we simply mash it
// into the top of the verttype where there are unused bits.
const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24);
// If vtype has changed, setup the vertex decoder.
// TODO: Simply cache the setup decoders instead.
if (vertTypeID != lastVType_) {
dec_ = GetVertexDecoder(vertTypeID);
lastVType_ = vertTypeID;
}
}
void TransformDrawEngine::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) {
if (vertexCount == 0)
return; // we ignore zero-sized draw calls.
if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls + vertexCount > VERTEX_BUFFER_MAX)
Flush();
// TODO: Is this the right thing to do?
if (prim == GE_PRIM_KEEP_PREVIOUS) {
prim = prevPrim_;
}
prevPrim_ = prim;
SetupVertexDecoderInternal(vertType);
dec_->IncrementStat(STAT_VERTSSUBMITTED, vertexCount);
if (bytesRead)
*bytesRead = vertexCount * dec_->VertexSize();
gpuStats.numDrawCalls++;
gpuStats.numVertsSubmitted += vertexCount;
DeferredDrawCall &dc = drawCalls[numDrawCalls];
dc.verts = verts;
dc.inds = inds;
dc.vertType = vertType;
dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT;
dc.prim = prim;
dc.vertexCount = vertexCount;
u32 dhash = dcid_;
dhash ^= (u32)(uintptr_t)verts;
dhash = __rotl(dhash, 13);
dhash ^= (u32)(uintptr_t)inds;
dhash = __rotl(dhash, 13);
dhash ^= (u32)vertType;
dhash = __rotl(dhash, 13);
dhash ^= (u32)vertexCount;
dhash = __rotl(dhash, 13);
dhash ^= (u32)prim;
dcid_ = dhash;
if (inds) {
GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound);
} else {
dc.indexLowerBound = 0;
dc.indexUpperBound = vertexCount - 1;
}
if (uvScale) {
uvScale[numDrawCalls] = gstate_c.uv;
}
numDrawCalls++;
vertexCountInDrawCalls += vertexCount;
if (g_Config.bSoftwareSkinning && (vertType & GE_VTYPE_WEIGHT_MASK)) {
DecodeVertsStep();
decodeCounter_++;
}
}
void TransformDrawEngine::DecodeVerts() {
UVScale origUV;
if (uvScale)
origUV = gstate_c.uv;
for (; decodeCounter_ < numDrawCalls; decodeCounter_++) {
if (uvScale)
gstate_c.uv = uvScale[decodeCounter_];
DecodeVertsStep();
}
// Sanity check
if (indexGen.Prim() < 0) {
ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim());
// Force to points (0)
indexGen.AddPrim(GE_PRIM_POINTS, 0);
}
if (uvScale)
gstate_c.uv = origUV;
}
void TransformDrawEngine::DecodeVertsStep() {
const int i = decodeCounter_;
const DeferredDrawCall &dc = drawCalls[i];
indexGen.SetIndex(decodedVerts_);
int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound;
u32 indexType = dc.indexType;
void *inds = dc.inds;
if (indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) {
// Decode the verts and apply morphing. Simple.
dec_->DecodeVerts(decoded + decodedVerts_ * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
decodedVerts_ += indexUpperBound - indexLowerBound + 1;
indexGen.AddPrim(dc.prim, dc.vertexCount);
} else {
// It's fairly common that games issue long sequences of PRIM calls, with differing
// inds pointer but the same base vertex pointer. We'd like to reuse vertices between
// these as much as possible, so we make sure here to combine as many as possible
// into one nice big drawcall, sharing data.
// 1. Look ahead to find the max index, only looking as "matching" drawcalls.
// Expand the lower and upper bounds as we go.
int lastMatch = i;
const int total = numDrawCalls;
if (uvScale) {
for (int j = i + 1; j < total; ++j) {
if (drawCalls[j].verts != dc.verts)
break;
if (memcmp(&uvScale[j], &uvScale[i], sizeof(uvScale[0])) != 0)
break;
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
lastMatch = j;
}
} else {
for (int j = i + 1; j < total; ++j) {
if (drawCalls[j].verts != dc.verts)
break;
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
lastMatch = j;
}
}
// 2. Loop through the drawcalls, translating indices as we go.
switch (indexType) {
case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT:
for (int j = i; j <= lastMatch; j++) {
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound);
}
break;
case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT:
for (int j = i; j <= lastMatch; j++) {
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16 *)drawCalls[j].inds, indexLowerBound);
}
break;
}
const int vertexCount = indexUpperBound - indexLowerBound + 1;
// 3. Decode that range of vertex data.
dec_->DecodeVerts(decoded + decodedVerts_ * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
decodedVerts_ += vertexCount;
// 4. Advance indexgen vertex counter.
indexGen.Advance(vertexCount);
decodeCounter_ = lastMatch;
}
}
u32 TransformDrawEngine::ComputeHash() {
u32 fullhash = 0;
int vertexSize = dec_->GetDecVtxFmt().stride;
// TODO: Add some caps both for numDrawCalls and num verts to check?
// It is really very expensive to check all the vertex data so often.
for (int i = 0; i < numDrawCalls; i++) {
const DeferredDrawCall &dc = drawCalls[i];
if (!dc.inds) {
fullhash += DoReliableHash((const char *)dc.verts, vertexSize * dc.vertexCount, 0x1DE8CAC4);
} else {
int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound;
int j = i + 1;
int lastMatch = i;
while (j < numDrawCalls) {
if (drawCalls[j].verts != dc.verts)
break;
indexLowerBound = std::min(indexLowerBound, (int)dc.indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)dc.indexUpperBound);
lastMatch = j;
j++;
}
// This could get seriously expensive with sparse indices. Need to combine hashing ranges the same way
// we do when drawing.
fullhash += DoReliableHash((const char *)dc.verts + vertexSize * indexLowerBound,
vertexSize * (indexUpperBound - indexLowerBound), 0x029F3EE1);
int indexSize = (dec_->VertexType() & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT ? 2 : 1;
// Hm, we will miss some indices when combining above, but meh, it should be fine.
fullhash += DoReliableHash((const char *)dc.inds, indexSize * dc.vertexCount, 0x955FD1CA);
i = lastMatch;
}
}
if (uvScale) {
fullhash += DoReliableHash(&uvScale[0], sizeof(uvScale[0]) * numDrawCalls, 0x0123e658);
}
return fullhash;
}
void TransformDrawEngine::ClearTrackedVertexArrays() {
for (auto vai = vai_.begin(); vai != vai_.end(); vai++) {
delete vai->second;
}
vai_.clear();
}
void TransformDrawEngine::DecimateTrackedVertexArrays() {
if (--decimationCounter_ <= 0) {
decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL;
} else {
return;
}
int threshold = gpuStats.numFlips - VAI_KILL_AGE;
for (auto iter = vai_.begin(); iter != vai_.end(); ) {
if (iter->second->lastFrame < threshold) {
delete iter->second;
vai_.erase(iter++);
} else {
++iter;
}
}
}
VertexArrayInfo::~VertexArrayInfo() {
if (vbo)
glDeleteBuffers(1, &vbo);
if (ebo)
glDeleteBuffers(1, &ebo);
}
GLuint TransformDrawEngine::AllocateBuffer() {
if (bufferNameCache_.empty()) {
bufferNameCache_.resize(VERTEXCACHE_NAME_CACHE_SIZE);
glGenBuffers(VERTEXCACHE_NAME_CACHE_SIZE, &bufferNameCache_[0]);
}
GLuint buf = bufferNameCache_.back();
bufferNameCache_.pop_back();
return buf;
}
void TransformDrawEngine::FreeBuffer(GLuint buf) {
// We can reuse buffers by setting new data on them.
bufferNameCache_.push_back(buf);
// But let's not keep too many around, will eat up memory.
if (bufferNameCache_.size() >= VERTEXCACHE_NAME_CACHE_FULL_SIZE) {
GLsizei extra = (GLsizei)bufferNameCache_.size() - VERTEXCACHE_NAME_CACHE_SIZE;
glDeleteBuffers(extra, &bufferNameCache_[VERTEXCACHE_NAME_CACHE_SIZE]);
bufferNameCache_.resize(VERTEXCACHE_NAME_CACHE_SIZE);
}
}
void TransformDrawEngine::DoFlush() {
gpuStats.numFlushes++;
gpuStats.numTrackedVertexArrays = (int)vai_.size();
// This is not done on every drawcall, we should collect vertex data
// until critical state changes. That's when we draw (flush).
GEPrimitiveType prim = prevPrim_;
ApplyDrawState(prim);
Shader *vshader = shaderManager_->ApplyVertexShader(prim, lastVType_);
// Compiler warns about this because it's only used in the #ifdeffed out RangeElements path.
int maxIndex = 0;
if (vshader->UseHWTransform()) {
GLuint vbo = 0, ebo = 0;
int vertexCount = 0;
bool useElements = true;
// Cannot cache vertex data with morph enabled.
bool useCache = g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK);
// Also avoid caching when software skinning.
if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK))
useCache = false;
if (useCache) {
u32 id = dcid_;
auto iter = vai_.find(id);
VertexArrayInfo *vai;
if (iter != vai_.end()) {
// We've seen this before. Could have been a cached draw.
vai = iter->second;
} else {
vai = new VertexArrayInfo();
vai_[id] = vai;
}
switch (vai->status) {
case VertexArrayInfo::VAI_NEW:
{
// Haven't seen this one before.
u32 dataHash = ComputeHash();
vai->hash = dataHash;
vai->status = VertexArrayInfo::VAI_HASHING;
vai->drawsUntilNextFullHash = 0;
DecodeVerts(); // writes to indexGen
vai->numVerts = indexGen.VertexCount();
vai->prim = indexGen.Prim();
vai->maxIndex = indexGen.MaxIndex();
vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0;
goto rotateVBO;
}
// Hashing - still gaining confidence about the buffer.
// But if we get this far it's likely to be worth creating a vertex buffer.
case VertexArrayInfo::VAI_HASHING:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
if (vai->drawsUntilNextFullHash == 0) {
u32 newHash = ComputeHash();
if (newHash != vai->hash) {
vai->status = VertexArrayInfo::VAI_UNRELIABLE;
if (vai->vbo) {
FreeBuffer(vai->vbo);
vai->vbo = 0;
}
if (vai->ebo) {
FreeBuffer(vai->ebo);
vai->ebo = 0;
}
DecodeVerts();
goto rotateVBO;
}
if (vai->numVerts > 100) {
// exponential backoff up to 16 draws, then every 24
vai->drawsUntilNextFullHash = std::min(24, vai->numFrames);
} else {
// Lower numbers seem much more likely to change.
vai->drawsUntilNextFullHash = 0;
}
// TODO: tweak
//if (vai->numFrames > 1000) {
// vai->status = VertexArrayInfo::VAI_RELIABLE;
//}
} else {
vai->drawsUntilNextFullHash--;
// TODO: "mini-hashing" the first 32 bytes of the vertex/index data or something.
}
if (vai->vbo == 0) {
DecodeVerts();
vai->numVerts = indexGen.VertexCount();
vai->prim = indexGen.Prim();
vai->maxIndex = indexGen.MaxIndex();
vai->flags = gstate_c.vertexFullAlpha ? VAI_FLAG_VERTEXFULLALPHA : 0;
useElements = !indexGen.SeenOnlyPurePrims();
if (!useElements && indexGen.PureCount()) {
vai->numVerts = indexGen.PureCount();
}
vai->vbo = AllocateBuffer();
glBindBuffer(GL_ARRAY_BUFFER, vai->vbo);
glBufferData(GL_ARRAY_BUFFER, dec_->GetDecVtxFmt().stride * indexGen.MaxIndex(), decoded, GL_STATIC_DRAW);
// If there's only been one primitive type, and it's either TRIANGLES, LINES or POINTS,
// there is no need for the index buffer we built. We can then use glDrawArrays instead
// for a very minor speed boost.
if (useElements) {
vai->ebo = AllocateBuffer();
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vai->ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short) * indexGen.VertexCount(), (GLvoid *)decIndex, GL_STATIC_DRAW);
} else {
vai->ebo = 0;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
} else {
gpuStats.numCachedDrawCalls++;
glBindBuffer(GL_ARRAY_BUFFER, vai->vbo);
if (vai->ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vai->ebo);
useElements = vai->ebo ? true : false;
gpuStats.numCachedVertsDrawn += vai->numVerts;
gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA;
}
vbo = vai->vbo;
ebo = vai->ebo;
vertexCount = vai->numVerts;
maxIndex = vai->maxIndex;
prim = static_cast<GEPrimitiveType>(vai->prim);
break;
}
// Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time.
case VertexArrayInfo::VAI_RELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
gpuStats.numCachedDrawCalls++;
gpuStats.numCachedVertsDrawn += vai->numVerts;
vbo = vai->vbo;
ebo = vai->ebo;
glBindBuffer(GL_ARRAY_BUFFER, vbo);
if (ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
vertexCount = vai->numVerts;
maxIndex = vai->maxIndex;
prim = static_cast<GEPrimitiveType>(vai->prim);
gstate_c.vertexFullAlpha = vai->flags & VAI_FLAG_VERTEXFULLALPHA;
break;
}
case VertexArrayInfo::VAI_UNRELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
DecodeVerts();
goto rotateVBO;
}
}
vai->lastFrame = gpuStats.numFlips;
} else {
DecodeVerts();
rotateVBO:
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
useElements = !indexGen.SeenOnlyPurePrims();
vertexCount = indexGen.VertexCount();
maxIndex = indexGen.MaxIndex();
if (!useElements && indexGen.PureCount()) {
vertexCount = indexGen.PureCount();
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
prim = indexGen.Prim();
}
VERBOSE_LOG(G3D, "Flush prim %i! %i verts in one go", prim, vertexCount);
bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
LinkedShader *program = shaderManager_->ApplyFragmentShader(vshader, prim, lastVType_);
SetupDecFmtForDraw(program, dec_->GetDecVtxFmt(), vbo ? 0 : decoded);
if (useElements) {
#if 1 // USING_GLES2
glDrawElements(glprim[prim], vertexCount, GL_UNSIGNED_SHORT, ebo ? 0 : (GLvoid*)decIndex);
#else
glDrawRangeElements(glprim[prim], 0, maxIndex, vertexCount, GL_UNSIGNED_SHORT, ebo ? 0 : (GLvoid*)decIndex);
#endif
if (ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
} else {
glDrawArrays(glprim[prim], 0, vertexCount);
}
if (vbo)
glBindBuffer(GL_ARRAY_BUFFER, 0);
} else {
DecodeVerts();
bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
LinkedShader *program = shaderManager_->ApplyFragmentShader(vshader, prim, lastVType_);
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
prim = indexGen.Prim();
// Undo the strip optimization, not supported by the SW code yet.
if (prim == GE_PRIM_TRIANGLE_STRIP)
prim = GE_PRIM_TRIANGLES;
SoftwareTransformAndDraw(
prim, decoded, program, indexGen.VertexCount(),
dec_->VertexType(), (void *)decIndex, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(),
indexGen.MaxIndex());
}
indexGen.Reset();
decodedVerts_ = 0;
numDrawCalls = 0;
vertexCountInDrawCalls = 0;
decodeCounter_ = 0;
dcid_ = 0;
prevPrim_ = GE_PRIM_INVALID;
gstate_c.vertexFullAlpha = true;
#ifndef MOBILE_DEVICE
host->GPUNotifyDraw();
#endif
}
struct Plane {
float x, y, z, w;
void Set(float _x, float _y, float _z, float _w) { x = _x; y = _y; z = _z; w = _w; }
float Test(float f[3]) const { return x * f[0] + y * f[1] + z * f[2] + w; }
};
static void PlanesFromMatrix(float mtx[16], Plane planes[6]) {
planes[0].Set(mtx[3]-mtx[0], mtx[7]-mtx[4], mtx[11]-mtx[8], mtx[15]-mtx[12]); // Right
planes[1].Set(mtx[3]+mtx[0], mtx[7]+mtx[4], mtx[11]+mtx[8], mtx[15]+mtx[12]); // Left
planes[2].Set(mtx[3]+mtx[1], mtx[7]+mtx[5], mtx[11]+mtx[9], mtx[15]+mtx[13]); // Bottom
planes[3].Set(mtx[3]-mtx[1], mtx[7]-mtx[5], mtx[11]-mtx[9], mtx[15]-mtx[13]); // Top
planes[4].Set(mtx[3]+mtx[2], mtx[7]+mtx[6], mtx[11]+mtx[10], mtx[15]+mtx[14]); // Near
planes[5].Set(mtx[3]-mtx[2], mtx[7]-mtx[6], mtx[11]-mtx[10], mtx[15]-mtx[14]); // Far
}
// This code is HIGHLY unoptimized!
//
// It does the simplest and safest test possible: If all points of a bbox is outside a single of
// our clipping planes, we reject the box. Tighter bounds would be desirable but would take more calculations.
bool TransformDrawEngine::TestBoundingBox(void* control_points, int vertexCount, u32 vertType) {
SimpleVertex *corners = (SimpleVertex *)(decoded + 65536 * 12);
float *verts = (float *)(decoded + 65536 * 18);
// Try to skip NormalizeVertices if it's pure positions. No need to bother with a vertex decoder
// and a large vertex format.
if ((vertType & 0xFFFFFF) == GE_VTYPE_POS_FLOAT) {
// memcpy(verts, control_points, 12 * vertexCount);
verts = (float *)control_points;
} else if ((vertType & 0xFFFFFF) == GE_VTYPE_POS_8BIT) {
const s8 *vtx = (const s8 *)control_points;
for (int i = 0; i < vertexCount * 3; i++) {
verts[i] = vtx[i] * (1.0f / 128.0f);
}
} else if ((vertType & 0xFFFFFF) == GE_VTYPE_POS_16BIT) {
const s16 *vtx = (const s16*)control_points;
for (int i = 0; i < vertexCount * 3; i++) {
verts[i] = vtx[i] * (1.0f / 32768.0f);
}
} else {
// Simplify away bones and morph before proceeding
u8 *temp_buffer = decoded + 65536 * 24;
NormalizeVertices((u8 *)corners, temp_buffer, (u8 *)control_points, 0, vertexCount, vertType);
// Special case for float positions only.
const float *ctrl = (const float *)control_points;
for (int i = 0; i < vertexCount; i++) {
verts[i * 3] = corners[i].pos.x;
verts[i * 3 + 1] = corners[i].pos.y;
verts[i * 3 + 2] = corners[i].pos.z;
}
}
Plane planes[6];
float world[16];
float view[16];
float worldview[16];
float worldviewproj[16];
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
Matrix4ByMatrix4(worldview, world, view);
Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);
PlanesFromMatrix(worldviewproj, planes);
for (int plane = 0; plane < 6; plane++) {
int inside = 0;
int out = 0;
for (int i = 0; i < vertexCount; i++) {
// Here we can test against the frustum planes!
float value = planes[plane].Test(verts + i * 3);
if (value < 0)
out++;
else
inside++;
}
if (inside == 0) {
// All out
return false;
}
// Any out. For testing that the planes are in the right locations.
// if (out != 0) return false;
}
return true;
}
bool TransformDrawEngine::IsCodePtrVertexDecoder(const u8 *ptr) const {
return decJitCache_->IsInSpace(ptr);
}
// TODO: Probably move this to common code (with normalization?)
static Vec3f ClipToScreen(const Vec4f& coords) {
// TODO: Check for invalid parameters (x2 < x1, etc)
float vpx1 = getFloat24(gstate.viewportx1);
float vpx2 = getFloat24(gstate.viewportx2);
float vpy1 = getFloat24(gstate.viewporty1);
float vpy2 = getFloat24(gstate.viewporty2);
float vpz1 = getFloat24(gstate.viewportz1);
float vpz2 = getFloat24(gstate.viewportz2);
float retx = coords.x * vpx1 / coords.w + vpx2;
float rety = coords.y * vpy1 / coords.w + vpy2;
float retz = coords.z * vpz1 / coords.w + vpz2;
// 16 = 0xFFFF / 4095.9375
return Vec3f(retx * 16, rety * 16, retz);
}
static Vec3f ScreenToDrawing(const Vec3f& coords) {
Vec3f ret;
ret.x = (coords.x - gstate.getOffsetX16()) * (1.0f / 16.0f);
ret.y = (coords.y - gstate.getOffsetY16()) * (1.0f / 16.0f);
ret.z = coords.z;
return ret;
}
// TODO: This probably is not the best interface.
bool TransformDrawEngine::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) {
// This is always for the current vertices.
u16 indexLowerBound = 0;
u16 indexUpperBound = count - 1;
bool savedVertexFullAlpha = gstate_c.vertexFullAlpha;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
const u8 *inds = Memory::GetPointer(gstate_c.indexAddr);
const u16 *inds16 = (const u16 *)inds;
if (inds) {
GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound);
indices.resize(count);
switch (gstate.vertType & GE_VTYPE_IDX_MASK) {
case GE_VTYPE_IDX_16BIT:
for (int i = 0; i < count; ++i) {
indices[i] = inds16[i];
}
break;
case GE_VTYPE_IDX_8BIT:
for (int i = 0; i < count; ++i) {
indices[i] = inds[i];
}
break;
default:
return false;
}
} else {
indices.clear();
}
} else {
indices.clear();
}
static std::vector<u32> temp_buffer;
static std::vector<SimpleVertex> simpleVertices;
temp_buffer.resize(std::max((int)indexUpperBound, 8192) * 128 / sizeof(u32));
simpleVertices.resize(indexUpperBound + 1);
NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), indexLowerBound, indexUpperBound, gstate.vertType);
float world[16];
float view[16];
float worldview[16];
float worldviewproj[16];
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
Matrix4ByMatrix4(worldview, world, view);
Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);
vertices.resize(indexUpperBound + 1);
for (int i = indexLowerBound; i <= indexUpperBound; ++i) {
const SimpleVertex &vert = simpleVertices[i];
if (gstate.isModeThrough()) {
if (gstate.vertType & GE_VTYPE_TC_MASK) {
vertices[i].u = vert.uv[0];
vertices[i].v = vert.uv[1];
} else {
vertices[i].u = 0.0f;
vertices[i].v = 0.0f;
}
vertices[i].x = vert.pos.x;
vertices[i].y = vert.pos.y;
vertices[i].z = vert.pos.z;
if (gstate.vertType & GE_VTYPE_COL_MASK) {
memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
} else {
memset(vertices[i].c, 0, sizeof(vertices[i].c));
}
} else {
float clipPos[4];
Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj);
Vec3f screenPos = ClipToScreen(clipPos);
Vec3f drawPos = ScreenToDrawing(screenPos);
if (gstate.vertType & GE_VTYPE_TC_MASK) {
vertices[i].u = vert.uv[0];
vertices[i].v = vert.uv[1];
} else {
vertices[i].u = 0.0f;
vertices[i].v = 0.0f;
}
vertices[i].x = drawPos.x;
vertices[i].y = drawPos.y;
vertices[i].z = drawPos.z;
if (gstate.vertType & GE_VTYPE_COL_MASK) {
memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
} else {
memset(vertices[i].c, 0, sizeof(vertices[i].c));
}
}
}
gstate_c.vertexFullAlpha = savedVertexFullAlpha;
return true;
}