mirror of
https://github.com/libretro/ppsspp.git
synced 2024-11-24 16:49:50 +00:00
606 lines
18 KiB
C++
606 lines
18 KiB
C++
// Copyright (c) 2013- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include "Common/MemoryUtil.h"
|
|
#include "Core/Host.h"
|
|
#include "Core/Config.h"
|
|
#include "GPU/GPUState.h"
|
|
#include "GPU/GLES/TransformPipeline.h"
|
|
#include "GPU/Common/VertexDecoderCommon.h"
|
|
#include "GPU/Common/SplineCommon.h"
|
|
|
|
#include "GPU/Software/TransformUnit.h"
|
|
#include "GPU/Software/Clipper.h"
|
|
#include "GPU/Software/Lighting.h"
|
|
|
|
static u8 buf[65536 * 48]; // yolo
|
|
bool TransformUnit::outside_range_flag = false;
|
|
|
|
WorldCoords TransformUnit::ModelToWorld(const ModelCoords& coords)
|
|
{
|
|
Mat3x3<float> world_matrix(gstate.worldMatrix);
|
|
return WorldCoords(world_matrix * coords) + Vec3<float>(gstate.worldMatrix[9], gstate.worldMatrix[10], gstate.worldMatrix[11]);
|
|
}
|
|
|
|
WorldCoords TransformUnit::ModelToWorldNormal(const ModelCoords& coords)
|
|
{
|
|
Mat3x3<float> world_matrix(gstate.worldMatrix);
|
|
return WorldCoords(world_matrix * coords);
|
|
}
|
|
|
|
ViewCoords TransformUnit::WorldToView(const WorldCoords& coords)
|
|
{
|
|
Mat3x3<float> view_matrix(gstate.viewMatrix);
|
|
return ViewCoords(view_matrix * coords) + Vec3<float>(gstate.viewMatrix[9], gstate.viewMatrix[10], gstate.viewMatrix[11]);
|
|
}
|
|
|
|
ClipCoords TransformUnit::ViewToClip(const ViewCoords& coords)
|
|
{
|
|
Vec4<float> coords4(coords.x, coords.y, coords.z, 1.0f);
|
|
Mat4x4<float> projection_matrix(gstate.projMatrix);
|
|
return ClipCoords(projection_matrix * coords4);
|
|
}
|
|
|
|
static inline ScreenCoords ClipToScreenInternal(const ClipCoords& coords, bool *outside_range_flag) {
|
|
ScreenCoords ret;
|
|
|
|
// Parameters here can seem invalid, but the PSP is fine with negative viewport widths etc.
|
|
// The checking that OpenGL and D3D do is actually quite superflous as the calculations still "work"
|
|
// with some pretty crazy inputs, which PSP games are happy to do at times.
|
|
float xScale = gstate.getViewportXScale();
|
|
float xCenter = gstate.getViewportXCenter();
|
|
float yScale = gstate.getViewportYScale();
|
|
float yCenter = gstate.getViewportYCenter();
|
|
float zScale = gstate.getViewportZScale();
|
|
float zCenter = gstate.getViewportZCenter();
|
|
|
|
float x = coords.x * xScale / coords.w + xCenter;
|
|
float y = coords.y * yScale / coords.w + yCenter;
|
|
float z = coords.z * zScale / coords.w + zCenter;
|
|
|
|
// Is this really right?
|
|
if (gstate.clipEnable & 0x1) {
|
|
if (z < 0.f)
|
|
z = 0.f;
|
|
if (z > 65535.f)
|
|
z = 65535.f;
|
|
}
|
|
|
|
if (outside_range_flag && (x > 4095.9375f || y > 4095.9375f || x < 0 || y < 0 || z < 0 || z > 65535.f))
|
|
*outside_range_flag = true;
|
|
|
|
// 16 = 0xFFFF / 4095.9375
|
|
return ScreenCoords(x * 16, y * 16, z);
|
|
}
|
|
|
|
ScreenCoords TransformUnit::ClipToScreen(const ClipCoords& coords)
|
|
{
|
|
return ClipToScreenInternal(coords, nullptr);
|
|
}
|
|
|
|
DrawingCoords TransformUnit::ScreenToDrawing(const ScreenCoords& coords)
|
|
{
|
|
DrawingCoords ret;
|
|
// TODO: What to do when offset > coord?
|
|
ret.x = (((u32)coords.x - gstate.getOffsetX16()) / 16) & 0x3ff;
|
|
ret.y = (((u32)coords.y - gstate.getOffsetY16()) / 16) & 0x3ff;
|
|
ret.z = coords.z;
|
|
return ret;
|
|
}
|
|
|
|
ScreenCoords TransformUnit::DrawingToScreen(const DrawingCoords& coords)
|
|
{
|
|
ScreenCoords ret;
|
|
ret.x = (u32)coords.x * 16 + gstate.getOffsetX16();
|
|
ret.y = (u32)coords.y * 16 + gstate.getOffsetY16();
|
|
ret.z = coords.z;
|
|
return ret;
|
|
}
|
|
|
|
VertexData TransformUnit::ReadVertex(VertexReader& vreader)
|
|
{
|
|
VertexData vertex;
|
|
|
|
float pos[3];
|
|
// VertexDecoder normally scales z, but we want it unscaled.
|
|
vreader.ReadPosThroughZ16(pos);
|
|
|
|
if (!gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV()) {
|
|
float uv[2];
|
|
vreader.ReadUV(uv);
|
|
vertex.texturecoords = Vec2<float>(uv[0], uv[1]);
|
|
}
|
|
|
|
if (vreader.hasNormal()) {
|
|
float normal[3];
|
|
vreader.ReadNrm(normal);
|
|
vertex.normal = Vec3<float>(normal[0], normal[1], normal[2]);
|
|
|
|
if (gstate.areNormalsReversed())
|
|
vertex.normal = -vertex.normal;
|
|
}
|
|
|
|
if (vertTypeIsSkinningEnabled(gstate.vertType) && !gstate.isModeThrough()) {
|
|
float W[8] = { 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f };
|
|
vreader.ReadWeights(W);
|
|
|
|
Vec3<float> tmppos(0.f, 0.f, 0.f);
|
|
Vec3<float> tmpnrm(0.f, 0.f, 0.f);
|
|
|
|
for (int i = 0; i < vertTypeGetNumBoneWeights(gstate.vertType); ++i) {
|
|
Mat3x3<float> bone(&gstate.boneMatrix[12*i]);
|
|
tmppos += (bone * ModelCoords(pos[0], pos[1], pos[2]) + Vec3<float>(gstate.boneMatrix[12*i+9], gstate.boneMatrix[12*i+10], gstate.boneMatrix[12*i+11])) * W[i];
|
|
if (vreader.hasNormal())
|
|
tmpnrm += (bone * vertex.normal) * W[i];
|
|
}
|
|
|
|
pos[0] = tmppos.x;
|
|
pos[1] = tmppos.y;
|
|
pos[2] = tmppos.z;
|
|
if (vreader.hasNormal())
|
|
vertex.normal = tmpnrm;
|
|
}
|
|
|
|
if (vreader.hasColor0()) {
|
|
float col[4];
|
|
vreader.ReadColor0(col);
|
|
vertex.color0 = Vec4<int>(col[0]*255, col[1]*255, col[2]*255, col[3]*255);
|
|
} else {
|
|
vertex.color0 = Vec4<int>(gstate.getMaterialAmbientR(), gstate.getMaterialAmbientG(), gstate.getMaterialAmbientB(), gstate.getMaterialAmbientA());
|
|
}
|
|
|
|
if (vreader.hasColor1()) {
|
|
float col[3];
|
|
vreader.ReadColor1(col);
|
|
vertex.color1 = Vec3<int>(col[0]*255, col[1]*255, col[2]*255);
|
|
} else {
|
|
vertex.color1 = Vec3<int>(0, 0, 0);
|
|
}
|
|
|
|
if (!gstate.isModeThrough()) {
|
|
vertex.modelpos = ModelCoords(pos[0], pos[1], pos[2]);
|
|
vertex.worldpos = WorldCoords(TransformUnit::ModelToWorld(vertex.modelpos));
|
|
ModelCoords viewpos = TransformUnit::WorldToView(vertex.worldpos);
|
|
vertex.clippos = ClipCoords(TransformUnit::ViewToClip(viewpos));
|
|
if (gstate.isFogEnabled()) {
|
|
vertex.fogdepth = (viewpos.z + getFloat24(gstate.fog1)) * getFloat24(gstate.fog2);
|
|
} else {
|
|
vertex.fogdepth = 1.0f;
|
|
}
|
|
vertex.screenpos = ClipToScreenInternal(vertex.clippos, &outside_range_flag);
|
|
|
|
if (vreader.hasNormal()) {
|
|
vertex.worldnormal = TransformUnit::ModelToWorldNormal(vertex.normal);
|
|
// TODO: Isn't there a flag that controls whether to normalize the normal?
|
|
vertex.worldnormal /= vertex.worldnormal.Length();
|
|
}
|
|
|
|
Lighting::Process(vertex, vreader.hasColor0());
|
|
} else {
|
|
vertex.screenpos.x = (u32)pos[0] * 16 + gstate.getOffsetX16();
|
|
vertex.screenpos.y = (u32)pos[1] * 16 + gstate.getOffsetY16();
|
|
vertex.screenpos.z = pos[2];
|
|
vertex.clippos.w = 1.f;
|
|
vertex.fogdepth = 1.f;
|
|
}
|
|
|
|
return vertex;
|
|
}
|
|
|
|
#define START_OPEN_U 1
|
|
#define END_OPEN_U 2
|
|
#define START_OPEN_V 4
|
|
#define END_OPEN_V 8
|
|
|
|
struct SplinePatch {
|
|
VertexData points[16];
|
|
int type;
|
|
int pad[3];
|
|
};
|
|
|
|
SplinePatch *TransformUnit::patchBuffer_ = 0;
|
|
int TransformUnit::patchBufferSize_ = 0;
|
|
|
|
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) {
|
|
VertexDecoder vdecoder;
|
|
VertexDecoderOptions options;
|
|
memset(&options, 0, sizeof(options));
|
|
options.expandAllUVtoFloat = false;
|
|
vdecoder.SetVertexType(vertex_type, options);
|
|
const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();
|
|
|
|
static u8 buf[65536 * 48]; // yolo
|
|
u16 index_lower_bound = 0;
|
|
u16 index_upper_bound = count_u * count_v - 1;
|
|
bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
|
|
u8* indices8 = (u8*)indices;
|
|
u16* indices16 = (u16*)indices;
|
|
if (indices)
|
|
GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);
|
|
vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound);
|
|
|
|
VertexReader vreader(buf, vtxfmt, vertex_type);
|
|
|
|
int num_patches_u = count_u - 3;
|
|
int num_patches_v = count_v - 3;
|
|
|
|
if (patchBufferSize_ < num_patches_u * num_patches_v) {
|
|
if (patchBuffer_) {
|
|
FreeAlignedMemory(patchBuffer_);
|
|
}
|
|
patchBuffer_ = (SplinePatch *)AllocateAlignedMemory(num_patches_u * num_patches_v, 16);
|
|
patchBufferSize_ = num_patches_u * num_patches_v;
|
|
}
|
|
SplinePatch *patches = patchBuffer_;
|
|
|
|
for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
|
|
for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
|
|
SplinePatch& patch = patches[patch_u + patch_v * num_patches_u];
|
|
|
|
for (int point = 0; point < 16; ++point) {
|
|
int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
|
|
if (indices)
|
|
vreader.Goto(indices_16bit ? indices16[idx] : indices8[idx]);
|
|
else
|
|
vreader.Goto(idx);
|
|
|
|
patch.points[point] = ReadVertex(vreader);
|
|
}
|
|
patch.type = (type_u | (type_v<<2));
|
|
if (patch_u != 0) patch.type &= ~START_OPEN_U;
|
|
if (patch_v != 0) patch.type &= ~START_OPEN_V;
|
|
if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
|
|
if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
|
|
}
|
|
}
|
|
|
|
for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
|
|
SplinePatch& patch = patches[patch_idx];
|
|
|
|
// TODO: Should do actual patch subdivision instead of just drawing the control points!
|
|
const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
|
|
const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
|
|
const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
|
|
const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
|
|
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
|
|
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
|
|
int point_index = tile_u + tile_v*4;
|
|
|
|
VertexData v0 = patch.points[point_index];
|
|
VertexData v1 = patch.points[point_index+1];
|
|
VertexData v2 = patch.points[point_index+4];
|
|
VertexData v3 = patch.points[point_index+5];
|
|
|
|
// TODO: Backface culling etc
|
|
Clipper::ProcessTriangle(v0, v1, v2);
|
|
Clipper::ProcessTriangle(v2, v1, v0);
|
|
Clipper::ProcessTriangle(v2, v1, v3);
|
|
Clipper::ProcessTriangle(v3, v1, v2);
|
|
}
|
|
}
|
|
}
|
|
|
|
host->GPUNotifyDraw();
|
|
}
|
|
|
|
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type, int *bytesRead)
|
|
{
|
|
// TODO: Cache VertexDecoder objects
|
|
VertexDecoder vdecoder;
|
|
VertexDecoderOptions options;
|
|
memset(&options, 0, sizeof(options));
|
|
options.expandAllUVtoFloat = false;
|
|
vdecoder.SetVertexType(vertex_type, options);
|
|
const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();
|
|
|
|
if (bytesRead)
|
|
*bytesRead = vertex_count * vdecoder.VertexSize();
|
|
|
|
// Frame skipping.
|
|
if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) {
|
|
return;
|
|
}
|
|
|
|
u16 index_lower_bound = 0;
|
|
u16 index_upper_bound = vertex_count - 1;
|
|
bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
|
|
u8* indices8 = (u8*)indices;
|
|
u16* indices16 = (u16*)indices;
|
|
if (indices)
|
|
GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
|
|
vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound);
|
|
|
|
VertexReader vreader(buf, vtxfmt, vertex_type);
|
|
|
|
const int max_vtcs_per_prim = 3;
|
|
int vtcs_per_prim = 0;
|
|
|
|
switch (prim_type) {
|
|
case GE_PRIM_POINTS: vtcs_per_prim = 1; break;
|
|
case GE_PRIM_LINES: vtcs_per_prim = 2; break;
|
|
case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break;
|
|
case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break;
|
|
}
|
|
|
|
VertexData data[max_vtcs_per_prim];
|
|
|
|
// TODO: Do this in two passes - first process the vertices (before indexing/stripping),
|
|
// then resolve the indices. This lets us avoid transforming shared vertices twice.
|
|
|
|
switch (prim_type) {
|
|
case GE_PRIM_POINTS:
|
|
case GE_PRIM_LINES:
|
|
case GE_PRIM_TRIANGLES:
|
|
case GE_PRIM_RECTANGLES:
|
|
{
|
|
for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) {
|
|
for (int i = 0; i < vtcs_per_prim; ++i) {
|
|
if (indices)
|
|
vreader.Goto(indices_16bit ? indices16[vtx+i] : indices8[vtx+i]);
|
|
else
|
|
vreader.Goto(vtx+i);
|
|
|
|
data[i] = ReadVertex(vreader);
|
|
if (outside_range_flag)
|
|
break;
|
|
}
|
|
if (outside_range_flag) {
|
|
outside_range_flag = false;
|
|
continue;
|
|
}
|
|
|
|
switch (prim_type) {
|
|
case GE_PRIM_TRIANGLES:
|
|
{
|
|
if (!gstate.isCullEnabled() || gstate.isModeClear()) {
|
|
Clipper::ProcessTriangle(data[0], data[1], data[2]);
|
|
Clipper::ProcessTriangle(data[2], data[1], data[0]);
|
|
} else if (!gstate.getCullMode())
|
|
Clipper::ProcessTriangle(data[2], data[1], data[0]);
|
|
else
|
|
Clipper::ProcessTriangle(data[0], data[1], data[2]);
|
|
break;
|
|
}
|
|
|
|
case GE_PRIM_RECTANGLES:
|
|
Clipper::ProcessRect(data[0], data[1]);
|
|
break;
|
|
|
|
case GE_PRIM_LINES:
|
|
Clipper::ProcessLine(data[0], data[1]);
|
|
break;
|
|
|
|
case GE_PRIM_POINTS:
|
|
Clipper::ProcessPoint(data[0]);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GE_PRIM_LINE_STRIP:
|
|
{
|
|
int skip_count = 1; // Don't draw a line when loading the first vertex
|
|
for (int vtx = 0; vtx < vertex_count; ++vtx) {
|
|
if (indices)
|
|
vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
|
|
else
|
|
vreader.Goto(vtx);
|
|
|
|
data[vtx & 1] = ReadVertex(vreader);
|
|
if (outside_range_flag) {
|
|
// Drop all primitives containing the current vertex
|
|
skip_count = 2;
|
|
outside_range_flag = false;
|
|
continue;
|
|
}
|
|
|
|
if (skip_count) {
|
|
--skip_count;
|
|
} else {
|
|
Clipper::ProcessLine(data[(vtx & 1) ^ 1], data[vtx & 1]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GE_PRIM_TRIANGLE_STRIP:
|
|
{
|
|
int skip_count = 2; // Don't draw a triangle when loading the first two vertices
|
|
|
|
for (int vtx = 0; vtx < vertex_count; ++vtx) {
|
|
if (indices)
|
|
vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
|
|
else
|
|
vreader.Goto(vtx);
|
|
|
|
data[vtx % 3] = ReadVertex(vreader);
|
|
if (outside_range_flag) {
|
|
// Drop all primitives containing the current vertex
|
|
skip_count = 2;
|
|
outside_range_flag = false;
|
|
continue;
|
|
}
|
|
|
|
if (skip_count) {
|
|
--skip_count;
|
|
continue;
|
|
}
|
|
|
|
if (!gstate.isCullEnabled() || gstate.isModeClear()) {
|
|
Clipper::ProcessTriangle(data[0], data[1], data[2]);
|
|
Clipper::ProcessTriangle(data[2], data[1], data[0]);
|
|
} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
|
|
// We need to reverse the vertex order for each second primitive,
|
|
// but we additionally need to do that for every primitive if CCW cullmode is used.
|
|
Clipper::ProcessTriangle(data[2], data[1], data[0]);
|
|
} else {
|
|
Clipper::ProcessTriangle(data[0], data[1], data[2]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GE_PRIM_TRIANGLE_FAN:
|
|
{
|
|
unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices
|
|
|
|
if (indices)
|
|
vreader.Goto(indices_16bit ? indices16[0] : indices8[0]);
|
|
else
|
|
vreader.Goto(0);
|
|
data[0] = ReadVertex(vreader);
|
|
|
|
for (int vtx = 1; vtx < vertex_count; ++vtx) {
|
|
if (indices)
|
|
vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
|
|
else
|
|
vreader.Goto(vtx);
|
|
|
|
data[2 - (vtx % 2)] = ReadVertex(vreader);
|
|
if (outside_range_flag) {
|
|
// Drop all primitives containing the current vertex
|
|
skip_count = 2;
|
|
outside_range_flag = false;
|
|
continue;
|
|
}
|
|
|
|
if (skip_count) {
|
|
--skip_count;
|
|
continue;
|
|
}
|
|
|
|
if (!gstate.isCullEnabled() || gstate.isModeClear()) {
|
|
Clipper::ProcessTriangle(data[0], data[1], data[2]);
|
|
Clipper::ProcessTriangle(data[2], data[1], data[0]);
|
|
} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
|
|
// We need to reverse the vertex order for each second primitive,
|
|
// but we additionally need to do that for every primitive if CCW cullmode is used.
|
|
Clipper::ProcessTriangle(data[2], data[1], data[0]);
|
|
} else {
|
|
Clipper::ProcessTriangle(data[0], data[1], data[2]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
host->GPUNotifyDraw();
|
|
}
|
|
|
|
// TODO: This probably is not the best interface.
|
|
bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) {
|
|
// This is always for the current vertices.
|
|
u16 indexLowerBound = 0;
|
|
u16 indexUpperBound = count - 1;
|
|
|
|
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
|
|
const u8 *inds = Memory::GetPointer(gstate_c.indexAddr);
|
|
const u16 *inds16 = (const u16 *)inds;
|
|
|
|
if (inds) {
|
|
GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound);
|
|
indices.resize(count);
|
|
switch (gstate.vertType & GE_VTYPE_IDX_MASK) {
|
|
case GE_VTYPE_IDX_16BIT:
|
|
for (int i = 0; i < count; ++i) {
|
|
indices[i] = inds16[i];
|
|
}
|
|
break;
|
|
case GE_VTYPE_IDX_8BIT:
|
|
for (int i = 0; i < count; ++i) {
|
|
indices[i] = inds[i];
|
|
}
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
} else {
|
|
indices.clear();
|
|
}
|
|
} else {
|
|
indices.clear();
|
|
}
|
|
|
|
static std::vector<u32> temp_buffer;
|
|
static std::vector<SimpleVertex> simpleVertices;
|
|
temp_buffer.resize(65536 * 24 / sizeof(u32));
|
|
simpleVertices.resize(indexUpperBound + 1);
|
|
|
|
VertexDecoder vdecoder;
|
|
VertexDecoderOptions options;
|
|
memset(&options, 0, sizeof(options));
|
|
options.expandAllUVtoFloat = false; // TODO: True should be fine here
|
|
vdecoder.SetVertexType(gstate.vertType, options);
|
|
DrawEngineCommon::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType);
|
|
|
|
float world[16];
|
|
float view[16];
|
|
float worldview[16];
|
|
float worldviewproj[16];
|
|
ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
|
|
ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
|
|
Matrix4ByMatrix4(worldview, world, view);
|
|
Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);
|
|
|
|
vertices.resize(indexUpperBound + 1);
|
|
for (int i = indexLowerBound; i <= indexUpperBound; ++i) {
|
|
const SimpleVertex &vert = simpleVertices[i];
|
|
|
|
if (gstate.isModeThrough()) {
|
|
if (gstate.vertType & GE_VTYPE_TC_MASK) {
|
|
vertices[i].u = vert.uv[0];
|
|
vertices[i].v = vert.uv[1];
|
|
} else {
|
|
vertices[i].u = 0.0f;
|
|
vertices[i].v = 0.0f;
|
|
}
|
|
vertices[i].x = vert.pos.x;
|
|
vertices[i].y = vert.pos.y;
|
|
vertices[i].z = vert.pos.z;
|
|
if (gstate.vertType & GE_VTYPE_COL_MASK) {
|
|
memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
|
|
} else {
|
|
memset(vertices[i].c, 0, sizeof(vertices[i].c));
|
|
}
|
|
} else {
|
|
float clipPos[4];
|
|
Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj);
|
|
ScreenCoords screenPos = ClipToScreen(clipPos);
|
|
DrawingCoords drawPos = ScreenToDrawing(screenPos);
|
|
|
|
if (gstate.vertType & GE_VTYPE_TC_MASK) {
|
|
vertices[i].u = vert.uv[0];
|
|
vertices[i].v = vert.uv[1];
|
|
} else {
|
|
vertices[i].u = 0.0f;
|
|
vertices[i].v = 0.0f;
|
|
}
|
|
vertices[i].x = drawPos.x;
|
|
vertices[i].y = drawPos.y;
|
|
vertices[i].z = 1.0;
|
|
if (gstate.vertType & GE_VTYPE_COL_MASK) {
|
|
memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
|
|
} else {
|
|
memset(vertices[i].c, 0, sizeof(vertices[i].c));
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|