ppsspp/Common/Vulkan/VulkanImage.cpp
2016-10-09 12:16:42 -07:00

385 lines
14 KiB
C++

#include "Common/Vulkan/VulkanImage.h"
#include "Common/Vulkan/VulkanMemory.h"
VkResult VulkanTexture::Create(int w, int h, VkFormat format) {
tex_width = w;
tex_height = h;
format_ = format;
VkFormatProperties formatProps;
vkGetPhysicalDeviceFormatProperties(vulkan_->GetPhysicalDevice(), format, &formatProps);
// See if we can use a linear tiled image for a texture, if not, we will need a staging image for the texture data.
// Linear tiling is usually only supported for 2D non-array textures.
// needStaging = (!(formatProps.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) ? true : false;
// Always stage.
needStaging = true;
return VK_SUCCESS;
}
void VulkanTexture::CreateMappableImage() {
// If we already have a mappableImage, forget it.
if (mappableImage) {
vulkan_->Delete().QueueDeleteImage(mappableImage);
}
if (mappableMemory) {
vulkan_->Delete().QueueDeleteDeviceMemory(mappableMemory);
}
bool U_ASSERT_ONLY pass;
VkImageCreateInfo image_create_info = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = format_;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_LINEAR;
image_create_info.usage = needStaging ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.flags = 0;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
VkMemoryAllocateInfo mem_alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
mem_alloc.allocationSize = 0;
mem_alloc.memoryTypeIndex = 0;
// Create a mappable image. It will be the texture if linear images are ok to be textures
// or it will be the staging image if they are not.
VkResult res = vkCreateImage(vulkan_->GetDevice(), &image_create_info, NULL, &mappableImage);
assert(res == VK_SUCCESS);
vkGetImageMemoryRequirements(vulkan_->GetDevice(), mappableImage, &mem_reqs);
assert(res == VK_SUCCESS);
mem_alloc.allocationSize = mem_reqs.size;
// Find the memory type that is host mappable.
pass = vulkan_->MemoryTypeFromProperties(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &mem_alloc.memoryTypeIndex);
assert(pass);
res = vkAllocateMemory(vulkan_->GetDevice(), &mem_alloc, NULL, &mappableMemory);
assert(res == VK_SUCCESS);
res = vkBindImageMemory(vulkan_->GetDevice(), mappableImage, mappableMemory, 0);
assert(res == VK_SUCCESS);
}
uint8_t *VulkanTexture::Lock(int level, int *rowPitch) {
CreateMappableImage();
VkImageSubresource subres = {};
subres.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subres.mipLevel = 0;
subres.arrayLayer = 0;
VkSubresourceLayout layout;
void *data;
// Get the subresource layout so we know what the row pitch is
vkGetImageSubresourceLayout(vulkan_->GetDevice(), mappableImage, &subres, &layout);
VkResult res = vkMapMemory(vulkan_->GetDevice(), mappableMemory, layout.offset, layout.size, 0, &data);
assert(res == VK_SUCCESS);
*rowPitch = (int)layout.rowPitch;
return (uint8_t *)data;
}
void VulkanTexture::Unlock() {
vkUnmapMemory(vulkan_->GetDevice(), mappableMemory);
VkCommandBuffer cmd = vulkan_->GetInitCommandBuffer();
// if we already have an image, queue it for destruction and forget it.
Wipe();
if (!needStaging) {
// If we can use the linear tiled image as a texture, just do it
image = mappableImage;
mem = mappableMemory;
TransitionImageLayout(cmd, image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
// Make sure we don't accidentally delete the main image.
mappableImage = VK_NULL_HANDLE;
mappableMemory = VK_NULL_HANDLE;
} else {
VkImageCreateInfo image_create_info = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = format_;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.flags = 0;
// The mappable image cannot be our texture, so create an optimally tiled image and blit to it
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkResult res = vkCreateImage(vulkan_->GetDevice(), &image_create_info, NULL, &image);
assert(res == VK_SUCCESS);
vkGetImageMemoryRequirements(vulkan_->GetDevice(), image, &mem_reqs);
VkMemoryAllocateInfo mem_alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
mem_alloc.memoryTypeIndex = 0;
mem_alloc.allocationSize = mem_reqs.size;
// Find memory type - don't specify any mapping requirements
bool pass = vulkan_->MemoryTypeFromProperties(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &mem_alloc.memoryTypeIndex);
assert(pass);
res = vkAllocateMemory(vulkan_->GetDevice(), &mem_alloc, NULL, &mem);
assert(res == VK_SUCCESS);
res = vkBindImageMemory(vulkan_->GetDevice(), image, mem, 0);
assert(res == VK_SUCCESS);
// Since we're going to blit from the mappable image, set its layout to SOURCE_OPTIMAL
TransitionImageLayout(cmd, mappableImage,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
TransitionImageLayout(cmd, image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageCopy copy_region;
copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.srcSubresource.mipLevel = 0;
copy_region.srcSubresource.baseArrayLayer = 0;
copy_region.srcSubresource.layerCount = 1;
copy_region.srcOffset.x = 0;
copy_region.srcOffset.y = 0;
copy_region.srcOffset.z = 0;
copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.dstSubresource.mipLevel = 0;
copy_region.dstSubresource.baseArrayLayer = 0;
copy_region.dstSubresource.layerCount = 1;
copy_region.dstOffset.x = 0;
copy_region.dstOffset.y = 0;
copy_region.dstOffset.z = 0;
copy_region.extent.width = tex_width;
copy_region.extent.height = tex_height;
copy_region.extent.depth = 1;
// Put the copy command into the command buffer
vkCmdCopyImage(cmd,
mappableImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copy_region);
assert(res == VK_SUCCESS);
// Set the layout for the texture image from DESTINATION_OPTIMAL to SHADER_READ_ONLY
TransitionImageLayout(cmd, image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
// Then drop the temporary mappable image - although should not be necessary...
vulkan_->Delete().QueueDeleteImage(mappableImage);
vulkan_->Delete().QueueDeleteDeviceMemory(mappableMemory);
}
VkImageViewCreateInfo view_info = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO };
view_info.image = image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = format_;
view_info.components.r = VK_COMPONENT_SWIZZLE_R;
view_info.components.g = VK_COMPONENT_SWIZZLE_G;
view_info.components.b = VK_COMPONENT_SWIZZLE_B;
view_info.components.a = VK_COMPONENT_SWIZZLE_A;
view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view_info.subresourceRange.baseMipLevel = 0;
view_info.subresourceRange.levelCount = 1;
view_info.subresourceRange.baseArrayLayer = 0;
view_info.subresourceRange.layerCount = 1;
VkResult res = vkCreateImageView(vulkan_->GetDevice(), &view_info, NULL, &view);
assert(res == VK_SUCCESS);
}
void VulkanTexture::Wipe() {
if (image) {
vulkan_->Delete().QueueDeleteImage(image);
}
if (view) {
vulkan_->Delete().QueueDeleteImageView(view);
}
if (mem && !allocator_) {
vulkan_->Delete().QueueDeleteDeviceMemory(mem);
} else if (mem) {
allocator_->Free(mem, offset_);
mem = VK_NULL_HANDLE;
}
}
static bool IsDepthStencilFormat(VkFormat format) {
switch (format) {
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_D16_UNORM_S8_UINT:
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return true;
default:
return false;
}
}
bool VulkanTexture::CreateDirect(int w, int h, int numMips, VkFormat format, VkImageLayout initialLayout, VkImageUsageFlags usage, const VkComponentMapping *mapping) {
Wipe();
VkCommandBuffer cmd = vulkan_->GetInitCommandBuffer();
tex_width = w;
tex_height = h;
numMips_ = numMips;
format_ = format;
VkImageAspectFlags aspect = IsDepthStencilFormat(format) ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
VkImageCreateInfo image_create_info = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = format_;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = numMips;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.flags = 0;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = usage;
if (initialLayout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
} else {
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
}
VkResult res = vkCreateImage(vulkan_->GetDevice(), &image_create_info, NULL, &image);
if (res != VK_SUCCESS) {
assert(res == VK_ERROR_OUT_OF_HOST_MEMORY || res == VK_ERROR_OUT_OF_DEVICE_MEMORY || res == VK_ERROR_TOO_MANY_OBJECTS);
return false;
}
// Write a command to transition the image to the requested layout, if it's not already that layout.
if (initialLayout != VK_IMAGE_LAYOUT_UNDEFINED && initialLayout != VK_IMAGE_LAYOUT_PREINITIALIZED) {
TransitionImageLayout(cmd, image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, initialLayout);
}
vkGetImageMemoryRequirements(vulkan_->GetDevice(), image, &mem_reqs);
if (allocator_) {
offset_ = allocator_->Allocate(mem_reqs, &mem);
if (offset_ == VulkanDeviceAllocator::ALLOCATE_FAILED) {
return false;
}
} else {
VkMemoryAllocateInfo mem_alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
mem_alloc.memoryTypeIndex = 0;
mem_alloc.allocationSize = mem_reqs.size;
// Find memory type - don't specify any mapping requirements
bool pass = vulkan_->MemoryTypeFromProperties(mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &mem_alloc.memoryTypeIndex);
assert(pass);
res = vkAllocateMemory(vulkan_->GetDevice(), &mem_alloc, NULL, &mem);
if (res != VK_SUCCESS) {
assert(res == VK_ERROR_OUT_OF_HOST_MEMORY || res == VK_ERROR_OUT_OF_DEVICE_MEMORY || res == VK_ERROR_TOO_MANY_OBJECTS);
return false;
}
offset_ = 0;
}
res = vkBindImageMemory(vulkan_->GetDevice(), image, mem, offset_);
if (res != VK_SUCCESS) {
assert(res == VK_ERROR_OUT_OF_HOST_MEMORY || res == VK_ERROR_OUT_OF_DEVICE_MEMORY || res == VK_ERROR_TOO_MANY_OBJECTS);
return false;
}
// Create the view while we're at it.
VkImageViewCreateInfo view_info = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO };
view_info.image = image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = format_;
if (mapping) {
view_info.components = *mapping;
} else {
view_info.components.r = VK_COMPONENT_SWIZZLE_R;
view_info.components.g = VK_COMPONENT_SWIZZLE_G;
view_info.components.b = VK_COMPONENT_SWIZZLE_B;
view_info.components.a = VK_COMPONENT_SWIZZLE_A;
}
view_info.subresourceRange.aspectMask = aspect;
view_info.subresourceRange.baseMipLevel = 0;
view_info.subresourceRange.levelCount = numMips;
view_info.subresourceRange.baseArrayLayer = 0;
view_info.subresourceRange.layerCount = 1;
res = vkCreateImageView(vulkan_->GetDevice(), &view_info, NULL, &view);
if (res != VK_SUCCESS) {
assert(res == VK_ERROR_OUT_OF_HOST_MEMORY || res == VK_ERROR_OUT_OF_DEVICE_MEMORY || res == VK_ERROR_TOO_MANY_OBJECTS);
return false;
}
return true;
}
void VulkanTexture::UploadMip(int mip, int mipWidth, int mipHeight, VkBuffer buffer, uint32_t offset, size_t rowLength) {
VkBufferImageCopy copy_region = {};
copy_region.bufferOffset = offset;
copy_region.bufferRowLength = (uint32_t)rowLength;
copy_region.bufferImageHeight = 0; // 2D
copy_region.imageExtent.width = mipWidth;
copy_region.imageExtent.height = mipHeight;
copy_region.imageExtent.depth = 1;
copy_region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.imageSubresource.mipLevel = mip;
copy_region.imageSubresource.baseArrayLayer = 0;
copy_region.imageSubresource.layerCount = 1;
VkCommandBuffer cmd = vulkan_->GetInitCommandBuffer();
vkCmdCopyBufferToImage(cmd, buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy_region);
}
void VulkanTexture::EndCreate() {
VkCommandBuffer cmd = vulkan_->GetInitCommandBuffer();
TransitionImageLayout(cmd, image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
void VulkanTexture::Destroy() {
if (view != VK_NULL_HANDLE) {
vulkan_->Delete().QueueDeleteImageView(view);
}
if (image != VK_NULL_HANDLE) {
if (mappableImage == image) {
mappableImage = VK_NULL_HANDLE;
}
vulkan_->Delete().QueueDeleteImage(image);
}
if (mem != VK_NULL_HANDLE && !allocator_) {
if (mappableMemory == mem) {
mappableMemory = VK_NULL_HANDLE;
}
vulkan_->Delete().QueueDeleteDeviceMemory(mem);
} else if (mem != VK_NULL_HANDLE) {
allocator_->Free(mem, offset_);
mem = VK_NULL_HANDLE;
}
}