scummvm/engines/m4/graphics.cpp

1361 lines
37 KiB
C++
Raw Normal View History

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/file.h"
#include "common/endian.h"
#include "common/system.h"
#include "common/util.h"
#include "common/ptr.h"
#include "m4/globals.h"
#include "m4/graphics.h"
#include "m4/sprite.h"
#include "m4/m4.h"
#include "m4/compression.h"
namespace M4 {
RGBList::RGBList(int numEntries, RGB8 *srcData, bool freeData) {
_size = numEntries;
assert(numEntries <= 256);
if (srcData == NULL) {
_data = new RGB8[numEntries];
_freeData = true;
} else {
_data = srcData;
_freeData = freeData;
}
_palIndexes = new byte[numEntries];
Common::set_to(&_palIndexes[0], &_palIndexes[numEntries], 0);
}
RGBList::~RGBList() {
if (_freeData)
delete[] _data;
delete[] _palIndexes;
}
void RGBList::setRange(int start, int count, const RGB8 *src) {
assert((start + count) <= _size);
Common::copy(&src[0], &src[count], &_data[start]);
}
/**
* Creates a duplicate of the given rgb list
*/
RGBList *RGBList::clone() const {
RGBList *dest = new RGBList(_size, _data, false);
_madsVm->_palette->addRange(dest);
return dest;
}
//--------------------------------------------------------------------------
#define VGA_COLOR_TRANS(x) (x == 0x3f ? 255 : x << 2)
M4Surface::~M4Surface() {
if (_rgbList) {
_madsVm->_palette->deleteRange(_rgbList);
delete _rgbList;
}
if (_ownsData)
free();
}
void M4Surface::loadCodesM4(Common::SeekableReadStream *source) {
if (!source) {
free();
return;
}
uint16 widthVal = source->readUint16LE();
uint16 heightVal = source->readUint16LE();
create(widthVal, heightVal, 1);
source->read(pixels, widthVal * heightVal);
}
void M4Surface::loadCodesMads(Common::SeekableReadStream *source) {
if (!source) {
free();
return;
}
uint16 widthVal = 320;
uint16 heightVal = 156;
byte *walkMap = new byte[source->size()];
create(widthVal, heightVal, 1);
source->read(walkMap, source->size());
byte *ptr = (byte *)getBasePtr(0, 0);
for (int y = 0; y < heightVal; y++) {
for (int x = 0; x < widthVal; x++) {
int ofs = x + (y * widthVal);
if ((walkMap[ofs / 8] << (ofs % 8)) & 0x80)
*ptr++ = 1; // walkable
else
*ptr++ = 0;
}
}
delete[] walkMap;
}
// Sprite related methods
void M4Surface::vLine(int x, int y1, int y2) {
Graphics::Surface::vLine(x, y1, y2, _color);
}
void M4Surface::hLine(int x1, int x2, int y) {
Graphics::Surface::hLine(x1, y, x2, _color);
}
void M4Surface::vLineXor(int x, int y1, int y2) {
// Clipping
if (x < 0 || x >= w)
return;
if (y2 < y1)
SWAP(y2, y1);
if (y1 < 0)
y1 = 0;
if (y2 >= h)
y2 = h - 1;
byte *ptr = (byte *)getBasePtr(x, y1);
while (y1++ <= y2) {
*ptr ^= 0xFF;
ptr += pitch;
}
}
void M4Surface::hLineXor(int x1, int x2, int y) {
// Clipping
if (y < 0 || y >= h)
return;
if (x2 < x1)
SWAP(x2, x1);
if (x1 < 0)
x1 = 0;
if (x2 >= w)
x2 = w - 1;
if (x2 < x1)
return;
byte *ptr = (byte *)getBasePtr(x1, y);
while (x1++ <= x2)
*ptr++ ^= 0xFF;
}
void M4Surface::drawLine(int x1, int y1, int x2, int y2, byte color) {
Graphics::Surface::drawLine(x1, y1, x2, y2, color);
}
void M4Surface::frameRect(int x1, int y1, int x2, int y2) {
Graphics::Surface::frameRect(Common::Rect(x1, y1, x2, y2), _color);
}
void M4Surface::fillRect(int x1, int y1, int x2, int y2) {
Graphics::Surface::fillRect(Common::Rect(x1, y1, x2, y2), _color);
}
void M4Surface::drawSprite(int x, int y, SpriteInfo &info, const Common::Rect &clipRect) {
enum {
kStatusSkip,
kStatusScale,
kStatusDraw
};
// NOTE: The current clipping code assumes that the top left corner of the clip
// rectangle is always 0, 0
assert(clipRect.top == 0 && clipRect.left == 0);
// TODO: Put err* and scaled* into SpriteInfo
int errX = info.hotX * info.scaleX % 100;
int errY = info.hotY * info.scaleY % 100;
int scaledWidth = scaleValue(info.width, info.scaleX, errX);
int scaledHeight = scaleValue(info.height, info.scaleY, errY);
/*
debugCN(kDebugGraphics, "M4Surface::drawSprite() info.width = %d; info.scaleX = %d; info.height = %d; info.scaleY = %d; scaledWidth = %d; scaledHeight = %d\n",
info.width, info.scaleX, info.height, info.scaleY, scaledWidth, scaledHeight);
*/
int clipX = 0, clipY = 0;
// Clip the sprite's width and height according to the clip rectangle's dimensions
// This clips the sprite to the bottom and right
if (x >= 0) {
scaledWidth = MIN<int>(x + scaledWidth, clipRect.right) - x;
} else {
clipX = x;
scaledWidth = x + scaledWidth;
}
if (y >= 0) {
scaledHeight = MIN<int>(y + scaledHeight, clipRect.bottom) - y;
} else {
clipY = y;
scaledHeight = y + scaledHeight;
}
//debugCN(kDebugGraphics, "M4Surface::drawSprite() width = %d; height = %d; scaledWidth = %d; scaledHeight = %d\n", info.width, info.height, scaledWidth, scaledHeight);
// Check if sprite is inside the screen. If it's not, there's no need to draw it
if (scaledWidth + x <= 0 || scaledHeight + y <= 0) // check left and top (in case x,y are negative)
return;
if (scaledWidth <= 0 || scaledHeight <= 0) // check right and bottom
return;
int heightAmt = scaledHeight;
byte *src = info.sprite->getBasePtr();
byte *dst = getBasePtr(x - info.hotX - clipX, y - info.hotY - clipY);
int status = kStatusSkip;
byte *scaledLineBuf = new byte[scaledWidth];
while (heightAmt > 0) {
if (status == kStatusSkip) {
// Skip line
errY -= info.scaleY;
if (errY < 0)
status = kStatusScale;
else
src += info.width;
} else {
if (status == kStatusScale) {
// Scale current line
byte *lineDst = scaledLineBuf;
int curErrX = errX;
int widthVal = scaledWidth;
byte *tempSrc = src;
int startX = clipX;
while (widthVal > 0) {
byte pixel = *tempSrc++;
curErrX -= info.scaleX;
while (curErrX < 0) {
if (startX == 0) {
*lineDst++ = pixel;
widthVal--;
} else {
startX++;
}
curErrX += 100;
}
}
src += info.width;
status = kStatusDraw;
}
if (status == kStatusDraw && clipY == 0) {
// Draw previously scaled line
// TODO Implement different drawing types (depth, shadow etc.)
byte *tempDst = dst;
for (int lineX = 0; lineX < scaledWidth; lineX++) {
byte pixel = scaledLineBuf[lineX];
if (info.encoding & 0x80) {
if (pixel == 0x80) {
pixel = 0;
} else {
byte destPixel = *tempDst;
byte r, g, b;
r = CLIP((info.palette[destPixel].r * pixel) >> 10, 0, 31);
g = CLIP((info.palette[destPixel].g * pixel) >> 10, 0, 31);
b = CLIP((info.palette[destPixel].b * pixel) >> 10, 0, 31);
pixel = info.inverseColourTable[(b << 10) | (g << 5) | r];
}
}
if (pixel)
*tempDst = pixel;
tempDst++;
}
dst += pitch;
heightAmt--;
// TODO depth etc.
//depthAddress += Destination -> Width;
errY += 100;
if (errY >= 0)
status = kStatusSkip;
} else if (status == kStatusDraw && clipY < 0) {
clipY++;
errY += 100;
if (errY >= 0)
status = kStatusSkip;
}
}
}
delete[] scaledLineBuf;
}
// Surface methods
void M4Surface::freeData() {
}
void M4Surface::clear() {
Common::set_to((byte *)pixels, (byte *)pixels + w * h, _vm->_palette->BLACK);
}
void M4Surface::reset() {
::free(pixels);
pixels = NULL;
if (_rgbList) {
_vm->_palette->deleteRange(_rgbList);
delete _rgbList;
_rgbList = NULL;
}
}
void M4Surface::frameRect(const Common::Rect &r, uint8 color) {
Graphics::Surface::frameRect(r, color);
}
void M4Surface::fillRect(const Common::Rect &r, uint8 color) {
Graphics::Surface::fillRect(r, color);
}
void M4Surface::copyFrom(M4Surface *src, const Common::Rect &srcBounds, int destX, int destY,
int transparentColour) {
// Validation of the rectangle and position
if ((destX >= w) || (destY >= h))
return;
Common::Rect copyRect = srcBounds;
if (destX < 0) {
copyRect.left += -destX;
destX = 0;
} else if (destX + copyRect.width() > w) {
copyRect.right -= destX + copyRect.width() - w;
}
if (destY < 0) {
copyRect.top += -destY;
destY = 0;
} else if (destY + copyRect.height() > h) {
copyRect.bottom -= destY + copyRect.height() - h;
}
if (!copyRect.isValidRect())
return;
// Copy the specified area
byte *data = src->getBasePtr();
byte *srcPtr = data + (src->width() * copyRect.top + copyRect.left);
byte *destPtr = (byte *)pixels + (destY * width()) + destX;
for (int rowCtr = 0; rowCtr < copyRect.height(); ++rowCtr) {
if (transparentColour == -1)
// No transparency, so copy line over
Common::copy(srcPtr, srcPtr + copyRect.width(), destPtr);
else {
// Copy each byte one at a time checking for the transparency color
for (int xCtr = 0; xCtr < copyRect.width(); ++xCtr)
if (srcPtr[xCtr] != transparentColour) destPtr[xCtr] = srcPtr[xCtr];
}
srcPtr += src->width();
destPtr += width();
}
src->freeData();
}
/**
* Copies a given image onto a destination surface with scaling, transferring only pixels that meet
* the specified depth requirement on a secondary surface contain depth information
*/
void M4Surface::copyFrom(M4Surface *src, int destX, int destY, int depth,
M4Surface *depthsSurface, int scale, int transparentColour) {
if (scale == 100) {
// Copy the specified area
Common::Rect copyRect(0, 0, src->width(), src->height());
if (destX < 0) {
copyRect.left += -destX;
destX = 0;
} else if (destX + copyRect.width() > w) {
copyRect.right -= destX + copyRect.width() - w;
}
if (destY < 0) {
copyRect.top += -destY;
destY = 0;
} else if (destY + copyRect.height() > h) {
copyRect.bottom -= destY + copyRect.height() - h;
}
if (!copyRect.isValidRect())
return;
byte *data = src->getBasePtr();
byte *srcPtr = data + (src->width() * copyRect.top + copyRect.left);
byte *depthsData = depthsSurface->getBasePtr();
byte *depthsPtr = depthsData + (depthsSurface->pitch * destY) + destX;
byte *destPtr = (byte *)pixels + (destY * pitch) + destX;
// 100% scaling variation
for (int rowCtr = 0; rowCtr < copyRect.height(); ++rowCtr) {
// Copy each byte one at a time checking against the depth
for (int xCtr = 0; xCtr < copyRect.width(); ++xCtr) {
if ((depth <= (depthsPtr[xCtr] & 0x7f)) && (srcPtr[xCtr] != transparentColour))
destPtr[xCtr] = srcPtr[xCtr];
}
srcPtr += src->width();
depthsPtr += depthsSurface->width();
destPtr += width();
}
src->freeData();
depthsSurface->freeData();
return;
}
// Start of draw logic for scaled sprites
const byte *srcPixelsP = src->getBasePtr();
int destRight = this->width() - 1;
int destBottom = this->height() - 1;
bool normalFrame = true; // TODO: false for negative frame numbers
int frameWidth = src->width();
int frameHeight = src->height();
int highestDim = MAX(frameWidth, frameHeight);
bool lineDist[MADS_SURFACE_WIDTH];
int distIndex = 0;
int distXCount = 0, distYCount = 0;
int distCtr = 0;
do {
distCtr += scale;
if (distCtr < 100) {
lineDist[distIndex] = false;
} else {
lineDist[distIndex] = true;
distCtr -= 100;
if (distIndex < frameWidth)
++distXCount;
if (distIndex < frameHeight)
++distYCount;
}
} while (++distIndex < highestDim);
destX -= distXCount / 2;
destY -= distYCount - 1;
// Check x bounding area
int spriteLeft = 0;
int spriteWidth = distXCount;
int widthAmount = destX + distXCount - 1;
if (destX < 0) {
spriteWidth += destX;
spriteLeft -= destX;
}
widthAmount -= destRight;
if (widthAmount > 0)
spriteWidth -= widthAmount;
int spriteRight = spriteLeft + spriteWidth;
if (spriteWidth <= 0)
return;
if (!normalFrame) {
destX += distXCount - 1;
spriteLeft = -(distXCount - spriteRight);
spriteRight = (-spriteLeft + spriteWidth);
}
// Check y bounding area
int spriteTop = 0;
int spriteHeight = distYCount;
int heightAmount = destY + distYCount - 1;
if (destY < 0) {
spriteHeight += destY;
spriteTop -= destY;
}
heightAmount -= destBottom;
if (heightAmount > 0)
spriteHeight -= heightAmount;
int spriteBottom = spriteTop + spriteHeight;
if (spriteHeight <= 0)
return;
byte *destPixelsP = this->getBasePtr(destX + spriteLeft, destY + spriteTop);
const byte *depthPixelsP = depthsSurface->getBasePtr(destX + spriteLeft, destY + spriteTop);
spriteLeft = (spriteLeft * (normalFrame ? 1 : -1));
// Loop through the lines of the sprite
for (int yp = 0, sprY = -1; yp < frameHeight; ++yp, srcPixelsP += src->pitch) {
if (!lineDist[yp])
// Not a display line, so skip it
continue;
// Check whether the sprite line is in the display range
++sprY;
if ((sprY >= spriteBottom) || (sprY < spriteTop))
continue;
// Found a line to display. Loop through the pixels
const byte *srcP = srcPixelsP;
const byte *depthP = depthPixelsP;
byte *destP = destPixelsP;
for (int xp = 0, sprX = 0; xp < frameWidth; ++xp, ++srcP) {
if (xp < spriteLeft)
// Not yet reached start of display area
continue;
if (!lineDist[sprX++])
// Not a display pixel
continue;
if ((*srcP != transparentColour) && (depth <= (*depthP & 0x7f)))
*destP = *srcP;
++destP;
++depthP;
}
// Move to the next destination line
destPixelsP += this->pitch;
depthPixelsP += depthsSurface->pitch;
}
src->freeData();
depthsSurface->freeData();
this->freeData();
}
void M4Surface::loadBackgroundRiddle(const char *sceneName) {
char resourceName[20];
Common::SeekableReadStream *stream;
// Loads a Riddle scene
sprintf(resourceName, "%s.tt", sceneName);
stream = _vm->_resourceManager->get(resourceName);
m4LoadBackground(stream);
_vm->_resourceManager->toss(resourceName);
}
void M4Surface::loadBackground(int sceneNumber, RGBList **palData) {
if (_vm->isM4() || (_vm->getGameType() == GType_RexNebular)) {
char resourceName[20];
Common::SeekableReadStream *stream;
if (_vm->getGameType() == GType_RexNebular) {
// Load Rex Nebular screen
bool hasPalette = palData != NULL;
if (!hasPalette)
palData = &_rgbList;
sprintf(resourceName, "rm%d.art", sceneNumber);
stream = _vm->_resourceManager->get(resourceName);
rexLoadBackground(stream, palData);
if (!hasPalette) {
_vm->_palette->addRange(_rgbList);
this->translate(_rgbList);
}
} else {
// Loads M4 game scene
if (palData)
*palData = NULL;
sprintf(resourceName, "%i.tt", sceneNumber);
stream = _vm->_resourceManager->get(resourceName);
m4LoadBackground(stream);
}
_vm->_resourceManager->toss(resourceName);
} else {
madsLoadBackground(sceneNumber, palData);
}
}
void M4Surface::madsLoadBackground(int roomNumber, RGBList **palData) {
// Get a MadsPack reference to the tile set and mapping
char resourceName[20];
int i;
// Uncompressed tile map resource
sprintf(resourceName, "rm%d.mm", roomNumber);
MadsPack tileMapFile(resourceName, _vm);
Common::SeekableReadStream *mapStream = tileMapFile.getItemStream(0);
// Get the details of the tiles and map
mapStream->readUint32LE();
int tileCountX = mapStream->readUint16LE();
int tileCountY = mapStream->readUint16LE();
int tileWidthMap = mapStream->readUint16LE();
int tileHeightMap = mapStream->readUint16LE();
int screenWidth = mapStream->readUint16LE();
int screenHeight = mapStream->readUint16LE();
int tileCountMap = tileCountX * tileCountY;
delete mapStream;
// Obtain tile map information
typedef Common::List<Common::SharedPtr<M4Surface> > TileSetList;
typedef TileSetList::iterator TileSetIterator;
TileSetList tileSet;
uint16 *tileMap = new uint16[tileCountMap];
mapStream = tileMapFile.getItemStream(1);
for (i = 0; i < tileCountMap; ++i)
tileMap[i] = mapStream->readUint16LE();
delete mapStream;
_vm->res()->toss(resourceName);
// --------------------------------------------------------------------------------
// Tile map data, which needs to be kept compressed, as the tile offsets refer to
// the compressed data. Each tile is then uncompressed separately
sprintf(resourceName, "rm%d.tt", roomNumber);
Common::SeekableReadStream *tileDataComp = _vm->_resourceManager->get(resourceName);
MadsPack tileData(tileDataComp);
Common::SeekableReadStream *tileDataUncomp = tileData.getItemStream(0);
// Validate that the data matches between the tiles and tile map file and is valid
int tileCount = tileDataUncomp->readUint16LE();
int tileWidth = tileDataUncomp->readUint16LE();
int tileHeight = tileDataUncomp->readUint16LE();
delete tileDataUncomp;
assert(tileCountMap == tileCount);
assert(tileWidth == tileWidthMap);
assert(tileHeight == tileHeightMap);
assert(screenWidth == _vm->_screen->width());
assert(screenHeight <= _vm->_screen->height());
// --------------------------------------------------------------------------------
// Get the palette to use
tileDataUncomp = tileData.getItemStream(2);
// Set palette
if (!palData) {
_vm->_palette->setMadsPalette(tileDataUncomp, 4);
} else {
int numColors;
RGB8 *rgbList = _vm->_palette->decodeMadsPalette(tileDataUncomp, &numColors);
*palData = new RGBList(numColors, rgbList, true);
}
delete tileDataUncomp;
// --------------------------------------------------------------------------------
// Get tile data
tileDataUncomp = tileData.getItemStream(1);
FabDecompressor fab;
uint32 compressedTileDataSize = 0;
for (i = 0; i < tileCount; i++) {
tileDataUncomp->seek(i * 4, SEEK_SET);
uint32 tileOfs = tileDataUncomp->readUint32LE();
M4Surface* newTile = new M4Surface(tileWidth, tileHeight);
if (i == tileCount - 1)
compressedTileDataSize = tileDataComp->size() - tileOfs;
else
compressedTileDataSize = tileDataUncomp->readUint32LE() - tileOfs;
//debugCN(kDebugGraphics, "Tile: %i, compressed size: %i\n", i, compressedTileDataSize);
newTile->clear();
byte *compressedTileData = new byte[compressedTileDataSize];
tileDataComp->seek(tileData.getDataOffset() + tileOfs, SEEK_SET);
tileDataComp->read(compressedTileData, compressedTileDataSize);
fab.decompress(compressedTileData, compressedTileDataSize, (byte*)newTile->pixels, tileWidth * tileHeight);
tileSet.push_back(TileSetList::value_type(newTile));
delete[] compressedTileData;
}
delete tileDataUncomp;
// --------------------------------------------------------------------------------
// Loop through the mapping data to place the tiles on the screen
uint16 *tIndex = &tileMap[0];
for (int y = 0; y < tileCountY; y++) {
for (int x = 0; x < tileCountX; x++) {
int tileIndex = *tIndex++;
assert(tileIndex < tileCount);
TileSetIterator tile = tileSet.begin();
for (i = 0; i < tileIndex; i++)
++tile;
((*tile).get())->copyTo(this, x * tileWidth, y * tileHeight);
}
}
tileSet.clear();
_vm->res()->toss(resourceName);
}
void M4Surface::rexLoadBackground(Common::SeekableReadStream *source, RGBList **palData) {
MadsPack packData(source);
Common::SeekableReadStream *sourceUnc = packData.getItemStream(0);
int sceneWidth = sourceUnc->readUint16LE();
int sceneHeight = sourceUnc->readUint16LE();
int sceneSize = sceneWidth * sceneHeight;
// Set palette
if (!palData) {
_vm->_palette->setMadsPalette(sourceUnc, 4);
} else {
int numColors;
RGB8 *rgbList = _vm->_palette->decodeMadsPalette(sourceUnc, &numColors);
*palData = new RGBList(numColors, rgbList, true);
}
delete sourceUnc;
// Get the raw data for the background
sourceUnc = packData.getItemStream(1);
assert((int)sourceUnc->size() >= sceneSize);
create(sceneWidth, sceneHeight, 1);
byte *pData = (byte *)pixels;
sourceUnc->read(pData, sceneSize);
freeData();
delete sourceUnc;
}
#undef COL_TRANS
void M4Surface::m4LoadBackground(Common::SeekableReadStream *source) {
M4Surface *tileBuffer = new M4Surface();
uint curTileX = 0, curTileY = 0;
int clipX = 0, clipY = 0;
RGB8 palette[256];
source->readUint32LE(); // magic, unused
/*uint32 size =*/ source->readUint32LE();
uint32 widthVal = source->readUint32LE();
uint32 heightVal = source->readUint32LE();
uint32 tilesX = source->readUint32LE();
uint32 tilesY = source->readUint32LE();
uint32 tileWidth = source->readUint32LE();
uint32 tileHeight = source->readUint32LE();
uint8 blackIndex = 0;
// Debug
//debugCN(kDebugGraphics, "loadBackground(): %dx%d picture (%d bytes) - %dx%d tiles of size %dx%d\n",
// widthVal, heightVal, size, tilesX, tilesY, tileWidth, tileHeight);
// BGR data, which is converted to RGB8
for (uint i = 0; i < 256; i++) {
palette[i].b = source->readByte() << 2;
palette[i].g = source->readByte() << 2;
palette[i].r = source->readByte() << 2;
palette[i].u = source->readByte() << 2;
if ((blackIndex == 0) && !palette[i].r && !palette[i].g && !palette[i].b)
blackIndex = i;
}
_vm->_palette->setPalette(palette, 0, 256);
// resize or create the surface
// note that the height of the scene in game scenes is smaller than 480, as the bottom part of the
// screen is the inventory
assert(width() == (int)widthVal);
//debugCN(kDebugGraphics, "width(): %d, widthVal: %d, height(): %d, heightVal: %d\n", width(), widthVal, height(), heightVal);
tileBuffer->create(tileWidth, tileHeight, 1);
for (curTileY = 0; curTileY < tilesY; curTileY++) {
clipY = MIN(heightVal, (1 + curTileY) * tileHeight) - (curTileY * tileHeight);
for (curTileX = 0; curTileX < tilesX; curTileX++) {
clipX = MIN(widthVal, (1 + curTileX) * tileWidth) - (curTileX * tileWidth);
// Read a tile and copy it to the destination surface
source->read(tileBuffer->pixels, tileWidth * tileHeight);
Common::Rect srcBounds(0, 0, clipX, clipY);
copyFrom(tileBuffer, srcBounds, curTileX * tileWidth, curTileY * tileHeight);
}
}
if (heightVal < (uint)height())
fillRect(Common::Rect(0, heightVal, width(), height()), blackIndex);
delete tileBuffer;
}
void M4Surface::madsLoadInterface(const Common::String &filename) {
MadsPack intFile(filename.c_str(), _vm);
RGB8 *palette = new RGB8[16];
// Chunk 0, palette
Common::SeekableReadStream *intStream = intFile.getItemStream(0);
for (int i = 0; i < 16; i++) {
palette[i].r = intStream->readByte() << 2;
palette[i].g = intStream->readByte() << 2;
palette[i].b = intStream->readByte() << 2;
intStream->readByte();
intStream->readByte();
intStream->readByte();
}
_rgbList = new RGBList(16, palette, true);
delete intStream;
// Chunk 1, data
intStream = intFile.getItemStream(1);
create(320, 44, 1);
intStream->read(pixels, 320 * 44);
delete intStream;
// Translate the interface palette
_vm->_palette->addRange(_rgbList);
this->translate(_rgbList);
}
void M4Surface::scrollX(int xAmount) {
if (xAmount == 0)
return;
byte buffer[80];
int direction = (xAmount > 0) ? -1 : 1;
int xSize = ABS(xAmount);
assert(xSize <= 80);
byte *srcP = (byte *)getBasePtr(0, 0);
for (int y = 0; y < height(); ++y, srcP += pitch) {
if (direction < 0) {
// Copy area to be overwritten
Common::copy(srcP, srcP + xSize, &buffer[0]);
// Shift the remainder of the line over the given area
Common::copy(srcP + xSize, srcP + width(), srcP);
// Move buffered area to the end of the line
Common::copy(&buffer[0], &buffer[xSize], srcP + width() - xSize);
} else {
// Copy area to be overwritten
Common::copy_backward(srcP + width() - xSize, srcP + width(), &buffer[80]);
// Shift the remainder of the line over the given area
Common::copy_backward(srcP, srcP + width() - xSize, srcP + width());
// Move buffered area to the start of the line
Common::copy_backward(&buffer[80 - xSize], &buffer[80], srcP + xSize);
}
}
}
void M4Surface::scrollY(int yAmount) {
if (yAmount == 0)
return;
int direction = (yAmount > 0) ? 1 : -1;
int ySize = ABS(yAmount);
assert(ySize < (height() / 2));
assert(width() == pitch);
int blockSize = ySize * width();
byte *tempData = (byte *)malloc(blockSize);
byte *pixelsP = (byte *)getBasePtr(0, 0);
if (direction > 0) {
// Buffer the lines to be overwritten
byte *srcP = (byte *)getBasePtr(0, height() - ySize);
Common::copy(srcP, srcP + (pitch * ySize), tempData);
// Vertically shift all the lines
Common::copy_backward(pixelsP, pixelsP + (pitch * (height() - ySize)),
pixelsP + (pitch * height()));
// Transfer the buffered lines top the top of the screen
Common::copy(tempData, tempData + blockSize, pixelsP);
} else {
// Buffer the lines to be overwritten
Common::copy(pixelsP, pixelsP + (pitch * ySize), tempData);
// Vertically shift all the lines
Common::copy(pixelsP + (pitch * ySize), pixelsP + (pitch * height()), pixelsP);
// Transfer the buffered lines to the bottom of the screen
Common::copy(tempData, tempData + blockSize, pixelsP + (pitch * (height() - ySize)));
}
::free(tempData);
}
void M4Surface::translate(RGBList *list, bool isTransparent) {
byte *p = getBasePtr(0, 0);
byte *palIndexes = list->palIndexes();
for (int i = 0; i < width() * height(); ++i, ++p) {
if (!isTransparent || (*p != TRANSPARENT_COLOUR_INDEX)) {
if (*p < list->size())
*p = palIndexes[*p];
else
warning("Pal index %d exceeds list size %d", *p, list->size());
}
}
freeData();
}
M4Surface *M4Surface::flipHorizontal() const {
M4Surface *dest = new M4Surface(width(), height());
dest->_rgbList = (this->_rgbList == NULL) ? NULL : this->_rgbList->clone();
byte *destP = dest->getBasePtr();
for (int y = 0; y < height(); ++y) {
const byte *srcP = getBasePtr(width() - 1, y);
for (int x = 0; x < width(); ++x)
*destP++ = *srcP--;
}
return dest;
}
//--------------------------------------------------------------------------
// Palette class
//
#define GREEN_START 32
#define NUM_GREENS 32
#define GREEN_END (GREEN_START + NUM_GREENS - 1)
#define NORMAL_START 64
#define NORMAL_END 255
#define NUM_NORMAL (NORMAL_END - NORMAL_START + 1)
// Support function for creating a list of palette indexes to change entries in the shaded range to
static void makeTranslationList(RGB8 *palData, byte transList[NUM_GREENS]) {
int i, j, minDistance;
byte bestIndex;
for (i = 0; i < NUM_GREENS; ++i) {
bestIndex = NORMAL_START;
minDistance = 255;
uint8 findCol = palData[GREEN_START + i].g;
// Find the closest matching palette color
for (j = NORMAL_START; j <= NORMAL_END; ++j) {
int greenVal = palData[j].g;
if (ABS(findCol - greenVal) < minDistance) {
minDistance = ABS(findCol - greenVal);
bestIndex = j;
}
if (minDistance == 0)
break;
}
transList[i] = bestIndex;
}
}
// Support function for fading in or out
static void fadeRange(MadsM4Engine *vm, RGB8 *srcPal, RGB8 *destPal, int startIndex, int endIndex,
int numSteps, uint delayAmount) {
RGB8 tempPal[256];
// perform the fade
for (int stepCtr = 1; stepCtr <= numSteps; ++stepCtr) {
// Delay the specified amount
uint32 startTime = g_system->getMillis();
while ((g_system->getMillis() - startTime) < delayAmount) {
vm->_events->handleEvents();
g_system->delayMillis(10);
}
for (int i = startIndex; i <= endIndex; ++i) {
// Handle the intermediate rgb values for fading
tempPal[i].r = (byte) (srcPal[i].r + (destPal[i].r - srcPal[i].r) * stepCtr / numSteps);
tempPal[i].g = (byte) (srcPal[i].g + (destPal[i].g - srcPal[i].g) * stepCtr / numSteps);
tempPal[i].b = (byte) (srcPal[i].b + (destPal[i].b - srcPal[i].b) * stepCtr / numSteps);
}
vm->_palette->setPalette(&tempPal[startIndex], startIndex, endIndex - startIndex + 1);
vm->_viewManager->refreshAll();
}
// Make sure the end palette exactly matches what is wanted
vm->_palette->setPalette(&destPal[startIndex], startIndex, endIndex - startIndex + 1);
}
Palette::Palette(MadsM4Engine *vm) : _vm(vm) {
reset();
_fading_in_progress = false;
Common::set_to(&_usageCount[0], &_usageCount[256], 0);
}
void Palette::setPalette(const byte *colors, uint start, uint num) {
g_system->setPalette(colors, start, num);
reset();
}
void Palette::setPalette(const RGB8 *colors, uint start, uint num) {
g_system->setPalette((const byte *)colors, start, num);
reset();
}
void Palette::grabPalette(byte *colors, uint start, uint num) {
g_system->grabPalette(colors, start, num);
}
void Palette::setEntry(uint index, uint8 r, uint8 g, uint8 b) {
RGB8 c;
c.r = r;
c.g = g;
c.b = b;
c.u = 255;
g_system->setPalette((const byte *)&c, index, 1);
}
uint8 Palette::palIndexFromRgb(byte r, byte g, byte b, RGB8 *paletteData) {
byte index = 0;
int32 minDist = 0x7fffffff;
RGB8 palData[256];
int Rdiff, Gdiff, Bdiff;
if (paletteData == NULL) {
g_system->grabPalette((byte *)palData, 0, 256);
paletteData = &palData[0];
}
for (int palIndex = 0; palIndex < 256; ++palIndex) {
Rdiff = r - paletteData[palIndex].r;
Gdiff = g - paletteData[palIndex].g;
Bdiff = b - paletteData[palIndex].b;
if (Rdiff * Rdiff + Gdiff * Gdiff + Bdiff * Bdiff < minDist) {
minDist = Rdiff * Rdiff + Gdiff * Gdiff + Bdiff * Bdiff;
index = (uint8)palIndex;
}
}
return (uint8)index;
}
void Palette::reset() {
RGB8 palData[256];
g_system->grabPalette((byte *)palData, 0, 256);
BLACK = palIndexFromRgb(0, 0, 0, palData);
BLUE = palIndexFromRgb(0, 0, 255, palData);
GREEN = palIndexFromRgb(0, 255, 0, palData);
CYAN = palIndexFromRgb(0, 255, 255, palData);
RED = palIndexFromRgb(255, 0, 0, palData);
VIOLET = palIndexFromRgb(255, 0, 255, palData);
BROWN = palIndexFromRgb(168, 84, 84, palData);
LIGHT_GRAY = palIndexFromRgb(168, 168, 168, palData);
DARK_GRAY = palIndexFromRgb(84, 84, 84, palData);
LIGHT_BLUE = palIndexFromRgb(0, 0, 127, palData);
LIGHT_GREEN = palIndexFromRgb(0, 127, 0, palData);
LIGHT_CYAN = palIndexFromRgb(0, 127, 127, palData);
LIGHT_RED = palIndexFromRgb(84, 0, 0, palData);
PINK = palIndexFromRgb(84, 0, 0, palData);
YELLOW = palIndexFromRgb(0, 84, 84, palData);
WHITE = palIndexFromRgb(255, 255, 255, palData);
}
void Palette::fadeToGreen(int numSteps, uint delayAmount) {
if (_fading_in_progress)
return;
_fading_in_progress = true;
byte translationList[NUM_GREENS];
int i;
byte *tempP;
uint8 greenAmount = 0;
RGB8 *srcPalette = (RGB8 *) &_originalPalette[0];
RGB8 *destPalette = (RGB8 *) &_fadedPalette[0];
_vm->_palette->grabPalette(srcPalette, 0, 256);
// Create the destination 'greenish' palette to fade to by setting the green component
// to the average of the RGB bytes, and leaving the Red and Blue parts as 0
Common::copy(&srcPalette[0], &srcPalette[256], &destPalette[0]);
for (i = 32; i < 256; ++i) {
byte luminance = (byte)((destPalette[i].r + destPalette[i].g + destPalette[i].b) / 3);
destPalette[i].g = MIN((byte)255, luminance);
destPalette[i].r = destPalette[i].b = 0;
}
// Handle the actual fading
fadeRange(_vm, srcPalette, destPalette, 21, 255, numSteps, delayAmount);
// Create a translation table to be used in translating pixels in the game surface
// using palette indexes in the range the range #32-63 into values from #64-255
makeTranslationList(destPalette, translationList);
// Use palette indexes from #32-63 for the range of possible shades
for (i = GREEN_START; i <= GREEN_END; ++i, greenAmount += 8) {
destPalette[i].g = greenAmount;
destPalette[i].r = destPalette[i].b = 0;
}
// Remap all pixels into the #32-63 range
tempP = _vm->_scene->getBasePtr();
for (int pixelCtr = 0; pixelCtr < _vm->_scene->width() * _vm->_scene->height();
++pixelCtr, ++tempP) {
// If pixel is in #32-63 range already, remap to higher palette entries
if ((*tempP >= GREEN_START) && (*tempP <= GREEN_END))
*tempP = translationList[*tempP - GREEN_START];
*tempP = (uint8) (GREEN_START + (destPalette[*tempP].g >> 3));
}
_vm->_palette->setPalette(&destPalette[GREEN_START], GREEN_START, NUM_GREENS);
_vm->_viewManager->refreshAll();
_fading_in_progress = false;
}
void Palette::fadeFromGreen(int numSteps, uint delayAmount, bool fadeToBlack) {
if (_fading_in_progress)
return;
_fading_in_progress = true;
RGB8 blackPalette[256];
RGB8 *fadedPalette = (RGB8 *) &_fadedPalette[0];
RGB8 *destPalette = (RGB8 *) &_originalPalette[0];
if (fadeToBlack) {
Common::set_to((byte *)&blackPalette[0], (byte *)&blackPalette[256], 0);
destPalette = &blackPalette[0];
}
// Initially restore the faded palette
_vm->_palette->setPalette(fadedPalette, 0, 256);
_vm->_viewManager->refreshAll();
// Restore the pixel data from the original screen
_vm->_scene->update();
// Handle the actual fading
fadeRange(_vm, fadedPalette, destPalette, GREEN_START, NORMAL_END, numSteps, delayAmount);
_fading_in_progress = false;
}
void Palette::fadeIn(int numSteps, uint delayAmount, RGBList *destPalette) {
fadeIn(numSteps, delayAmount, destPalette->data(), destPalette->size());
}
void Palette::fadeIn(int numSteps, uint delayAmount, RGB8 *destPalette, int numColors) {
if (_fading_in_progress)
return;
_fading_in_progress = true;
RGB8 blackPalette[256];
Common::set_to((byte *)&blackPalette[0], (byte *)&blackPalette[256], 0);
// Initially set the black palette
_vm->_palette->setPalette(blackPalette, 0, numColors);
// Handle the actual fading
fadeRange(_vm, blackPalette, destPalette, 0, numColors - 1, numSteps, delayAmount);
_fading_in_progress = false;
}
RGB8 *Palette::decodeMadsPalette(Common::SeekableReadStream *palStream, int *numColors) {
*numColors = palStream->readUint16LE();
assert(*numColors <= 252);
RGB8 *palData = new RGB8[*numColors];
Common::set_to((byte *)&palData[0], (byte *)&palData[*numColors], 0);
for (int i = 0; i < *numColors; ++i) {
byte r = palStream->readByte();
byte g = palStream->readByte();
byte b = palStream->readByte();
palData[i].r = VGA_COLOR_TRANS(r);
palData[i].g = VGA_COLOR_TRANS(g);
palData[i].b = VGA_COLOR_TRANS(b);
// The next 3 bytes are unused
palStream->skip(3);
}
return palData;
}
int Palette::setMadsPalette(Common::SeekableReadStream *palStream, int indexStart) {
int colorCount;
RGB8 *palData = Palette::decodeMadsPalette(palStream, &colorCount);
_vm->_palette->setPalette(palData, indexStart, colorCount);
delete palData;
return colorCount;
}
void Palette::setMadsSystemPalette() {
// Rex Nebular default system palette
resetColorCounts();
RGB8 palData[4];
palData[0].r = palData[0].g = palData[0].b = 0;
palData[1].r = palData[1].g = palData[1].b = 0x54;
palData[2].r = palData[2].g = palData[2].b = 0xb4;
palData[3].r = palData[3].g = palData[3].b = 0xff;
setPalette(palData, 0, 4);
blockRange(0, 4);
}
void Palette::resetColorCounts() {
Common::set_to(&_usageCount[0], &_usageCount[256], 0);
}
void Palette::blockRange(int startIndex, int size) {
// Use a reference count of -1 to signal a palette index shouldn't be used
Common::set_to(&_usageCount[startIndex], &_usageCount[startIndex + size], -1);
}
void Palette::addRange(RGBList *list) {
RGB8 *data = list->data();
byte *palIndexes = list->palIndexes();
RGB8 palData[256];
g_system->grabPalette((byte *)&palData[0], 0, 256);
bool paletteChanged = false;
for (int colIndex = 0; colIndex < list->size(); ++colIndex) {
// Scan through for an existing copy of the RGB value
int palIndex = -1;
while (++palIndex < 256) {
if (_usageCount[palIndex] <= 0)
// Palette index is to be skipped
continue;
if ((palData[palIndex].r == data[colIndex].r) &&
(palData[palIndex].g == data[colIndex].g) &&
(palData[palIndex].b == data[colIndex].b))
// Match found
break;
}
if (palIndex == 256) {
// No match found, so find a free slot to use
palIndex = -1;
while (++palIndex < 256) {
if (_usageCount[palIndex] == 0)
break;
}
if (palIndex == 256)
error("addRange - Ran out of palette space to allocate");
palData[palIndex].r = data[colIndex].r;
palData[palIndex].g = data[colIndex].g;
palData[palIndex].b = data[colIndex].b;
paletteChanged = true;
}
palIndexes[colIndex] = palIndex;
++_usageCount[palIndex];
}
if (paletteChanged) {
g_system->setPalette((byte *)&palData[0], 0, 256);
reset();
}
}
void Palette::deleteRange(RGBList *list) {
// Release the reference count on each of the palette entries
for (int colIndex = 0; colIndex < list->size(); ++colIndex) {
int palIndex = list->palIndexes()[colIndex];
assert(_usageCount[palIndex] > 0);
--_usageCount[palIndex];
}
}
void Palette::deleteAllRanges() {
for (int colIndex = 0; colIndex < 255; ++colIndex)
_usageCount[colIndex] = 0;
}
//--------------------------------------------------------------------------
// Support methods
void decompressRle(byte *rleData, int rleSize, byte *celData, int w, int h) {
byte *src = rleData;
byte *dst = celData;
byte len;
while (1) {
len = *src++;
if (len == 0) {
len = *src++;
if (len <= 2) {
if (len == 1) // end of sprite marker
break;
} else {
while (len--)
*dst++ = *src++;
}
} else {
while (len--)
*dst++ = *src;
src++;
}
}
}
int scaleValue(int value, int scale, int err) {
int scaled = 0;
while (value--) {
err -= scale;
while (err < 0) {
scaled++;
err += 100;
}
}
return scaled;
}
} // End of namespace M4