scummvm/engines/tinsel/sched.cpp

759 lines
18 KiB
C++
Raw Normal View History

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
* Process scheduler.
*/
#include "tinsel/handle.h"
#include "tinsel/pcode.h"
#include "tinsel/pid.h"
#include "tinsel/polygons.h"
#include "tinsel/sched.h"
#include "common/util.h"
namespace Tinsel {
Scheduler *g_scheduler = 0;
#include "common/pack-start.h" // START STRUCT PACKING
struct PROCESS_STRUC {
uint32 processId; // ID of process
SCNHANDLE hProcessCode; // handle to actor script
} PACKED_STRUCT;
#include "common/pack-end.h" // END STRUCT PACKING
CoroContext nullContext = NULL;
//----------------- LOCAL GLOBAL DATA --------------------
static uint32 numSceneProcess;
static SCNHANDLE hSceneProcess;
static uint32 numGlobalProcess;
static PROCESS_STRUC *pGlobalProcess;
//--------------------- FUNCTIONS ------------------------
Scheduler::Scheduler() {
processList = 0;
pFreeProcesses = 0;
pCurrent = 0;
#ifdef DEBUG
// diagnostic process counters
numProcs = 0;
maxProcs = 0;
#endif
pRCfunction = 0;
active = new PROCESS;
active->pPrevious = NULL;
g_scheduler = this; // FIXME HACK
}
Scheduler::~Scheduler() {
free(processList);
processList = NULL;
delete active;
active = 0;
}
/**
* Kills all processes and places them on the free list.
*/
void Scheduler::reset() {
#ifdef DEBUG
// clear number of process in use
numProcs = 0;
#endif
if (processList == NULL) {
// first time - allocate memory for process list
processList = (PROCESS *)calloc(MAX_PROCESSES, sizeof(PROCESS));
// make sure memory allocated
if (processList == NULL) {
error("Cannot allocate memory for process data");
}
// fill with garbage
memset(processList, 'S', MAX_PROCESSES * sizeof(PROCESS));
}
// no active processes
pCurrent = active->pNext = NULL;
// place first process on free list
pFreeProcesses = processList;
// link all other processes after first
for (int i = 1; i <= NUM_PROCESS; i++) {
processList[i - 1].pNext = (i == NUM_PROCESS) ? NULL : processList + i;
processList[i - 1].pPrevious = (i == 1) ? active : processList + (i - 2);
}
}
#ifdef DEBUG
/**
* Shows the maximum number of process used at once.
*/
void Scheduler::printStats() {
printf("%i process of %i used.\n", maxProcs, NUM_PROCESS);
}
#endif
#ifdef DEBUG
/**
* Checks both the active and free process list to insure all the links are valid,
* and that no processes have been lost
*/
void Scheduler::CheckStack() {
Common::List<PROCESS *> pList;
// Check both the active and free process lists
for (int i = 0; i < 2; ++i) {
PROCESS *p = (i == 0) ? active : pFreeProcesses;
if (p != NULL) {
// Make sure the linkages are correct
while (p->pNext != NULL) {
assert(p->pNext->pPrevious == p);
pList.push_back(p);
p = p->pNext;
}
pList.push_back(p);
}
}
// Make sure all processes are accounted for
for (int idx = 0; idx < NUM_PROCESS; idx++) {
bool found = false;
for (Common::List<PROCESS *>::iterator i = pList.begin(); i != pList.end(); ++i) {
PROCESS *pTemp = *i;
if (*i == &processList[idx]) {
found = true;
break;
}
}
assert(found);
}
}
#endif
/**
* Give all active processes a chance to run
*/
void Scheduler::schedule() {
// start dispatching active process list
PROCESS *pNext;
PROCESS *pProc = active->pNext;
while (pProc != NULL) {
pNext = pProc->pNext;
if (--pProc->sleepTime <= 0) {
// process is ready for dispatch, activate it
pCurrent = pProc;
pProc->coroAddr(pProc->state, pProc->param);
if (!pProc->state || pProc->state->_sleep <= 0) {
// Coroutine finished
pCurrent = pCurrent->pPrevious;
killProcess(pProc);
} else {
pProc->sleepTime = pProc->state->_sleep;
}
// pCurrent may have been changed
pNext = pCurrent->pNext;
pCurrent = NULL;
}
pProc = pNext;
}
}
/**
* Reschedules all the processes to run again this query
*/
void Scheduler::rescheduleAll() {
assert(pCurrent);
// Unlink current process
pCurrent->pPrevious->pNext = pCurrent->pNext;
if (pCurrent->pNext)
pCurrent->pNext->pPrevious = pCurrent->pPrevious;
// Add process to the start of the active list
pCurrent->pNext = active->pNext;
active->pNext->pPrevious = pCurrent;
active->pNext = pCurrent;
pCurrent->pPrevious = active;
}
/**
* If the specified process has already run on this tick, make it run
* again on the current tick.
*/
void Scheduler::reschedule(PPROCESS pReSchedProc) {
// If not currently processing the schedule list, then no action is needed
if (!pCurrent)
return;
if (!pReSchedProc)
pReSchedProc = pCurrent;
PPROCESS pEnd;
// Find the last process in the list.
// But if the target process is down the list from here, do nothing
for (pEnd = pCurrent; pEnd->pNext != NULL; pEnd = pEnd->pNext) {
if (pEnd->pNext == pReSchedProc)
return;
}
assert(pEnd->pNext == NULL);
// Could be in the middle of a KillProc()!
// Dying process was last and this process was penultimate
if (pReSchedProc->pNext == NULL)
return;
// If we're moving the current process, move it back by one, so that the next
// schedule() iteration moves to the now next one
if (pCurrent == pReSchedProc)
pCurrent = pCurrent->pPrevious;
// Unlink the process, and add it at the end
pReSchedProc->pPrevious->pNext = pReSchedProc->pNext;
pReSchedProc->pNext->pPrevious = pReSchedProc->pPrevious;
pEnd->pNext = pReSchedProc;
pReSchedProc->pPrevious = pEnd;
pReSchedProc->pNext = NULL;
}
/**
* Moves the specified process to the end of the dispatch queue
* allowing it to run again within the current game cycle.
* @param pGiveProc Which process
*/
void Scheduler::giveWay(PPROCESS pReSchedProc) {
// If not currently processing the schedule list, then no action is needed
if (!pCurrent)
return;
if (!pReSchedProc)
pReSchedProc = pCurrent;
// If the process is already at the end of the queue, nothing has to be done
if (!pReSchedProc->pNext)
return;
PPROCESS pEnd;
// Find the last process in the list.
for (pEnd = pCurrent; pEnd->pNext != NULL; pEnd = pEnd->pNext) ;
assert(pEnd->pNext == NULL);
// If we're moving the current process, move it back by one, so that the next
// schedule() iteration moves to the now next one
if (pCurrent == pReSchedProc)
pCurrent = pCurrent->pPrevious;
// Unlink the process, and add it at the end
pReSchedProc->pPrevious->pNext = pReSchedProc->pNext;
pReSchedProc->pNext->pPrevious = pReSchedProc->pPrevious;
pEnd->pNext = pReSchedProc;
pReSchedProc->pPrevious = pEnd;
pReSchedProc->pNext = NULL;
}
/**
* Creates a new process.
*
* @param pid process identifier
* @param CORO_ADDR coroutine start address
* @param pParam process specific info
* @param sizeParam size of process specific info
*/
PROCESS *Scheduler::createProcess(int pid, CORO_ADDR coroAddr, const void *pParam, int sizeParam) {
PROCESS *pProc;
// get a free process
pProc = pFreeProcesses;
// trap no free process
assert(pProc != NULL); // Out of processes
#ifdef DEBUG
// one more process in use
if (++numProcs > maxProcs)
maxProcs = numProcs;
#endif
// get link to next free process
pFreeProcesses = pProc->pNext;
if (pFreeProcesses)
pFreeProcesses->pPrevious = NULL;
if (pCurrent != NULL) {
// place new process before the next active process
pProc->pNext = pCurrent->pNext;
if (pProc->pNext)
pProc->pNext->pPrevious = pProc;
// make this new process the next active process
pCurrent->pNext = pProc;
pProc->pPrevious = pCurrent;
} else { // no active processes, place process at head of list
pProc->pNext = active->pNext;
pProc->pPrevious = active;
if (pProc->pNext)
pProc->pNext->pPrevious = pProc;
active->pNext = pProc;
}
// set coroutine entry point
pProc->coroAddr = coroAddr;
// clear coroutine state
pProc->state = 0;
// wake process up as soon as possible
pProc->sleepTime = 1;
// set new process id
pProc->pid = pid;
// set new process specific info
if (sizeParam) {
assert(sizeParam > 0 && sizeParam <= PARAM_SIZE);
// set new process specific info
memcpy(pProc->param, pParam, sizeParam);
}
// return created process
return pProc;
}
/**
* Kills the specified process.
*
* @param pKillProc which process to kill
*/
void Scheduler::killProcess(PROCESS *pKillProc) {
// make sure a valid process pointer
assert(pKillProc >= processList && pKillProc <= processList + NUM_PROCESS - 1);
// can not kill the current process using killProcess !
assert(pCurrent != pKillProc);
#ifdef DEBUG
// one less process in use
--numProcs;
assert(numProcs >= 0);
#endif
// Free process' resources
if (pRCfunction != NULL)
(pRCfunction)(pKillProc);
delete pKillProc->state;
// Take the process out of the active chain list
pKillProc->pPrevious->pNext = pKillProc->pNext;
if (pKillProc->pNext)
pKillProc->pNext->pPrevious = pKillProc->pPrevious;
// link first free process after pProc
pKillProc->pNext = pFreeProcesses;
if (pFreeProcesses)
pKillProc->pNext->pPrevious = pKillProc;
pKillProc->pPrevious = NULL;
// make pKillProc the first free process
pFreeProcesses = pKillProc;
}
/**
* Returns a pointer to the currently running process.
*/
PROCESS *Scheduler::getCurrentProcess() {
return pCurrent;
}
/**
* Returns the process identifier of the specified process.
*
* @param pProc which process
*/
int Scheduler::getCurrentPID() const {
PROCESS *pProc = pCurrent;
// make sure a valid process pointer
assert(pProc >= processList && pProc <= processList + NUM_PROCESS - 1);
// return processes PID
return pProc->pid;
}
/**
* Kills any process matching the specified PID. The current
* process cannot be killed.
*
* @param pidKill process identifier of process to kill
* @param pidMask mask to apply to process identifiers before comparison
* @return The number of processes killed is returned.
*/
int Scheduler::killMatchingProcess(int pidKill, int pidMask) {
int numKilled = 0;
PROCESS *pProc, *pPrev; // process list pointers
for (pProc = active->pNext, pPrev = active; pProc != NULL; pPrev = pProc, pProc = pProc->pNext) {
if ((pProc->pid & pidMask) == pidKill) {
// found a matching process
// dont kill the current process
if (pProc != pCurrent) {
// kill this process
numKilled++;
// Free the process' resources
if (pRCfunction != NULL)
(pRCfunction)(pProc);
delete pProc->state;
// make prev point to next to unlink pProc
pPrev->pNext = pProc->pNext;
if (pProc->pNext)
pPrev->pNext->pPrevious = pPrev;
// link first free process after pProc
pProc->pNext = pFreeProcesses;
pProc->pPrevious = NULL;
pFreeProcesses->pPrevious = pProc;
// make pProc the first free process
pFreeProcesses = pProc;
// set to a process on the active list
pProc = pPrev;
}
}
}
#ifdef DEBUG
// adjust process in use
numProcs -= numKilled;
assert(numProcs >= 0);
#endif
// return number of processes killed
return numKilled;
}
/**
* Set pointer to a function to be called by killProcess().
*
* May be called by a resource allocator, the function supplied is
* called by killProcess() to allow the resource allocator to free
* resources allocated to the dying process.
*
* @param pFunc Function to be called by killProcess()
*/
void Scheduler::setResourceCallback(VFPTRPP pFunc) {
pRCfunction = pFunc;
}
/**************************************************************************\
|*********** Stuff to do with scene and global processes ************|
\**************************************************************************/
/**
* The code for for restored scene processes.
*/
static void RestoredProcessProcess(CORO_PARAM, const void *param) {
CORO_BEGIN_CONTEXT;
INT_CONTEXT *pic;
CORO_END_CONTEXT(_ctx);
CORO_BEGIN_CODE(_ctx);
// get the stuff copied to process when it was created
_ctx->pic = *(const PINT_CONTEXT *)param;
_ctx->pic = RestoreInterpretContext(_ctx->pic);
AttachInterpret(_ctx->pic, g_scheduler->getCurrentProcess());
CORO_INVOKE_1(Interpret, _ctx->pic);
CORO_END_CODE;
}
/**
* Process Tinsel Process
*/
static void ProcessTinselProcess(CORO_PARAM, const void *param) {
const PINT_CONTEXT *pPic = (const PINT_CONTEXT *)param;
CORO_BEGIN_CONTEXT;
CORO_END_CONTEXT(_ctx);
CORO_BEGIN_CODE(_ctx);
// get the stuff copied to process when it was created
CORO_INVOKE_1(Interpret, *pPic);
CORO_KILL_SELF();
CORO_END_CODE;
}
/**************************************************************************\
|***************** Stuff to do with scene processes *****************|
\**************************************************************************/
/**
* Called to restore a scene process.
*/
void RestoreSceneProcess(INT_CONTEXT *pic) {
uint32 i;
PROCESS_STRUC *pStruc;
pStruc = (PROCESS_STRUC *)LockMem(hSceneProcess);
for (i = 0; i < numSceneProcess; i++) {
2009-02-02 12:36:41 +00:00
if (FROM_LE_32(pStruc[i].hProcessCode) == pic->hCode) {
g_scheduler->createProcess(PID_PROCESS + i, RestoredProcessProcess,
&pic, sizeof(pic));
break;
}
}
assert(i < numSceneProcess);
}
/**
* Run a scene process with the given event.
*/
void SceneProcessEvent(CORO_PARAM, uint32 procID, TINSEL_EVENT event, bool bWait, int myEscape,
bool *result) {
uint32 i; // Loop counter
if (result) *result = false;
CORO_BEGIN_CONTEXT;
PROCESS_STRUC *pStruc;
PPROCESS pProc;
PINT_CONTEXT pic;
CORO_END_CONTEXT(_ctx);
CORO_BEGIN_CODE(_ctx);
_ctx->pStruc = (PROCESS_STRUC *)LockMem(hSceneProcess);
for (i = 0; i < numSceneProcess; i++) {
2009-02-02 12:36:41 +00:00
if (FROM_LE_32(_ctx->pStruc[i].processId) == procID) {
assert(_ctx->pStruc[i].hProcessCode); // Must have some code to run
_ctx->pic = InitInterpretContext(GS_PROCESS,
2009-02-02 12:36:41 +00:00
FROM_LE_32(_ctx->pStruc[i].hProcessCode),
event,
NOPOLY, // No polygon
0, // No actor
NULL, // No object
myEscape);
if (_ctx->pic == NULL)
return;
_ctx->pProc = g_scheduler->createProcess(PID_PROCESS + i, ProcessTinselProcess,
&_ctx->pic, sizeof(_ctx->pic));
AttachInterpret(_ctx->pic, _ctx->pProc);
break;
}
}
if (i == numSceneProcess)
return;
if (bWait) {
CORO_INVOKE_2(WaitInterpret, _ctx->pProc, result);
}
CORO_END_CODE;
}
/**
* Kill all instances of a scene process.
*/
void KillSceneProcess(uint32 procID) {
uint32 i; // Loop counter
PROCESS_STRUC *pStruc;
pStruc = (PROCESS_STRUC *) LockMem(hSceneProcess);
for (i = 0; i < numSceneProcess; i++) {
2009-02-02 12:36:41 +00:00
if (FROM_LE_32(pStruc[i].processId) == procID) {
g_scheduler->killMatchingProcess(PID_PROCESS + i, -1);
break;
}
}
}
/**
* Register the scene processes in a scene.
*/
void SceneProcesses(uint32 numProcess, SCNHANDLE hProcess) {
numSceneProcess = numProcess;
hSceneProcess = hProcess;
}
/**************************************************************************\
|***************** Stuff to do with global processes ****************|
\**************************************************************************/
/**
* Called to restore a global process.
*/
void RestoreGlobalProcess(INT_CONTEXT *pic) {
uint32 i; // Loop counter
for (i = 0; i < numGlobalProcess; i++) {
if (pGlobalProcess[i].hProcessCode == pic->hCode) {
g_scheduler->createProcess(PID_GPROCESS + i, RestoredProcessProcess,
&pic, sizeof(pic));
break;
}
}
assert(i < numGlobalProcess);
}
/**
* Kill them all (restore game).
*/
void KillGlobalProcesses() {
for (uint32 i = 0; i < numGlobalProcess; ++i) {
g_scheduler->killMatchingProcess(PID_GPROCESS + i, -1);
}
}
/**
* Run a global process with the given event.
*/
bool GlobalProcessEvent(CORO_PARAM, uint32 procID, TINSEL_EVENT event, bool bWait, int myEscape) {
CORO_BEGIN_CONTEXT;
PINT_CONTEXT pic;
PPROCESS pProc;
CORO_END_CONTEXT(_ctx);
bool result = false;
CORO_BEGIN_CODE(_ctx);
uint32 i; // Loop counter
_ctx->pProc = NULL;
for (i = 0; i < numGlobalProcess; ++i) {
if (pGlobalProcess[i].processId == procID) {
assert(pGlobalProcess[i].hProcessCode); // Must have some code to run
_ctx->pic = InitInterpretContext(GS_GPROCESS,
pGlobalProcess[i].hProcessCode,
event,
NOPOLY, // No polygon
0, // No actor
NULL, // No object
myEscape);
if (_ctx->pic != NULL) {
_ctx->pProc = g_scheduler->createProcess(PID_GPROCESS + i, ProcessTinselProcess,
&_ctx->pic, sizeof(_ctx->pic));
AttachInterpret(_ctx->pic, _ctx->pProc);
}
break;
}
}
if ((i == numGlobalProcess) || (_ctx->pic == NULL))
result = false;
else if (bWait)
CORO_INVOKE_ARGS_V(WaitInterpret, false, (CORO_SUBCTX, _ctx->pProc, &result));
CORO_END_CODE;
return result;
}
/**
* Kill all instances of a global process.
*/
void xKillGlobalProcess(uint32 procID) {
uint32 i; // Loop counter
for (i = 0; i < numGlobalProcess; ++i) {
if (pGlobalProcess[i].processId == procID) {
g_scheduler->killMatchingProcess(PID_GPROCESS + i, -1);
break;
}
}
}
/**
* Register the global processes list
*/
void GlobalProcesses(uint32 numProcess, byte *pProcess) {
pGlobalProcess = new PROCESS_STRUC[numProcess];
numGlobalProcess = numProcess;
byte *p = pProcess;
for (uint i = 0; i < numProcess; ++i, p += 8) {
pGlobalProcess[i].processId = READ_LE_UINT32(p);
pGlobalProcess[i].hProcessCode = READ_LE_UINT32(p + 4);
}
}
/**
* Frees the global processes list
*/
void FreeGlobalProcesses() {
delete[] pGlobalProcess;
numGlobalProcess = 0;
}
} // End of namespace Tinsel