scummvm/engines/kyra/sound_adlib.cpp
2016-04-14 16:10:21 +03:00

2519 lines
74 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* LGPL License
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "kyra/sound_intern.h"
#include "kyra/resource.h"
#include "common/system.h"
#include "common/mutex.h"
#include "common/config-manager.h"
#include "audio/fmopl.h"
// Basic AdLib Programming:
// http://www.gamedev.net/reference/articles/article446.asp
#define CALLBACKS_PER_SECOND 72
namespace Audio {
class Mixer;
}
namespace Kyra {
class AdLibDriver {
public:
AdLibDriver(Audio::Mixer *mixer, int version);
~AdLibDriver();
void initDriver();
void setSoundData(uint8 *data, uint32 size);
void queueTrack(int track, int volume);
bool isChannelPlaying(int channel) const;
void stopAllChannels();
int getSoundTrigger() const { return _soundTrigger; }
void resetSoundTrigger() { _soundTrigger = 0; }
void callback();
void setSyncJumpMask(uint16 mask) { _syncJumpMask = mask; }
void setMusicVolume(uint8 volume);
void setSfxVolume(uint8 volume);
private:
// These variables have not yet been named, but some of them are partly
// known nevertheless:
//
// pitchBend - Sound-related. Possibly some sort of pitch bend.
// unk18 - Sound-effect. Used for secondaryEffect1()
// unk19 - Sound-effect. Used for secondaryEffect1()
// unk20 - Sound-effect. Used for secondaryEffect1()
// unk21 - Sound-effect. Used for secondaryEffect1()
// unk22 - Sound-effect. Used for secondaryEffect1()
// unk29 - Sound-effect. Used for primaryEffect1()
// unk30 - Sound-effect. Used for primaryEffect1()
// unk31 - Sound-effect. Used for primaryEffect1()
// unk32 - Sound-effect. Used for primaryEffect2()
// unk33 - Sound-effect. Used for primaryEffect2()
// unk34 - Sound-effect. Used for primaryEffect2()
// unk35 - Sound-effect. Used for primaryEffect2()
// unk36 - Sound-effect. Used for primaryEffect2()
// unk37 - Sound-effect. Used for primaryEffect2()
// unk38 - Sound-effect. Used for primaryEffect2()
// unk39 - Currently unused, except for updateCallback56()
// unk40 - Currently unused, except for updateCallback56()
// unk41 - Sound-effect. Used for primaryEffect2()
struct Channel {
bool lock; // New to ScummVM
uint8 opExtraLevel2;
const uint8 *dataptr;
uint8 duration;
uint8 repeatCounter;
int8 baseOctave;
uint8 priority;
uint8 dataptrStackPos;
const uint8 *dataptrStack[4];
int8 baseNote;
uint8 unk29;
uint8 unk31;
uint16 unk30;
uint16 unk37;
uint8 unk33;
uint8 unk34;
uint8 unk35;
uint8 unk36;
uint8 unk32;
uint8 unk41;
uint8 unk38;
uint8 opExtraLevel1;
uint8 spacing2;
uint8 baseFreq;
uint8 tempo;
uint8 position;
uint8 regAx;
uint8 regBx;
typedef void (AdLibDriver::*Callback)(Channel&);
Callback primaryEffect;
Callback secondaryEffect;
uint8 fractionalSpacing;
uint8 opLevel1;
uint8 opLevel2;
uint8 opExtraLevel3;
uint8 twoChan;
uint8 unk39;
uint8 unk40;
uint8 spacing1;
uint8 durationRandomness;
uint8 unk19;
uint8 unk18;
int8 unk20;
int8 unk21;
uint8 unk22;
uint16 offset;
uint8 tempoReset;
uint8 rawNote;
int8 pitchBend;
uint8 volumeModifier;
};
void primaryEffect1(Channel &channel);
void primaryEffect2(Channel &channel);
void secondaryEffect1(Channel &channel);
void resetAdLibState();
void writeOPL(byte reg, byte val);
void initChannel(Channel &channel);
void noteOff(Channel &channel);
void unkOutput2(uint8 num);
uint16 getRandomNr();
void setupDuration(uint8 duration, Channel &channel);
void setupNote(uint8 rawNote, Channel &channel, bool flag = false);
void setupInstrument(uint8 regOffset, const uint8 *dataptr, Channel &channel);
void noteOn(Channel &channel);
void adjustVolume(Channel &channel);
uint8 calculateOpLevel1(Channel &channel);
uint8 calculateOpLevel2(Channel &channel);
uint16 checkValue(int16 val) {
if (val < 0)
val = 0;
else if (val > 0x3F)
val = 0x3F;
return val;
}
// The sound data has at least two lookup tables:
//
// * One for programs, starting at offset 0.
// * One for instruments, starting at offset 500.
uint8 *getProgram(int progId) {
const uint16 offset = READ_LE_UINT16(_soundData + 2 * progId);
// In case an invalid offset is specified we return nullptr to
// indicate an error. 0xFFFF seems to indicate "this is not a valid
// program/instrument". However, 0 is also invalid because it points
// inside the offset table itself. We also ignore any offsets outside
// of the actual data size.
// The original does not contain any safety checks and will simply
// read outside of the valid sound data in case an invalid offset is
// encountered.
if (offset == 0 || offset >= _soundDataSize) {
return nullptr;
} else {
return _soundData + offset;
}
}
const uint8 *getInstrument(int instrumentId) {
return getProgram(_numPrograms + instrumentId);
}
void setupPrograms();
void executePrograms();
struct ParserOpcode {
typedef int (AdLibDriver::*POpcode)(const uint8 *&dataptr, Channel &channel, uint8 value);
POpcode function;
const char *name;
};
void setupParserOpcodeTable();
const ParserOpcode *_parserOpcodeTable;
int _parserOpcodeTableSize;
int update_setRepeat(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_checkRepeat(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setupProgram(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setNoteSpacing(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_jump(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_jumpToSubroutine(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_returnFromSubroutine(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setBaseOctave(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_stopChannel(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_playRest(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_writeAdLib(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setupNoteAndDuration(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setBaseNote(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setupSecondaryEffect1(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_stopOtherChannel(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_waitForEndOfProgram(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setupInstrument(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setupPrimaryEffect1(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_removePrimaryEffect1(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setBaseFreq(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setupPrimaryEffect2(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setPriority(const uint8 *&dataptr, Channel &channel, uint8 value);
int updateCallback23(const uint8 *&dataptr, Channel &channel, uint8 value);
int updateCallback24(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setExtraLevel1(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setupDuration(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_playNote(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setFractionalNoteSpacing(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setTempo(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_removeSecondaryEffect1(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setChannelTempo(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setExtraLevel3(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setExtraLevel2(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_changeExtraLevel2(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setAMDepth(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setVibratoDepth(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_changeExtraLevel1(const uint8 *&dataptr, Channel &channel, uint8 value);
int updateCallback38(const uint8 *&dataptr, Channel &channel, uint8 value);
int updateCallback39(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_removePrimaryEffect2(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_pitchBend(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_resetToGlobalTempo(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_nop(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setDurationRandomness(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_changeChannelTempo(const uint8 *&dataptr, Channel &channel, uint8 value);
int updateCallback46(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setupRhythmSection(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_playRhythmSection(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_removeRhythmSection(const uint8 *&dataptr, Channel &channel, uint8 value);
int updateCallback51(const uint8 *&dataptr, Channel &channel, uint8 value);
int updateCallback52(const uint8 *&dataptr, Channel &channel, uint8 value);
int updateCallback53(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setSoundTrigger(const uint8 *&dataptr, Channel &channel, uint8 value);
int update_setTempoReset(const uint8 *&dataptr, Channel &channel, uint8 value);
int updateCallback56(const uint8 *&dataptr, Channel &channel, uint8 value);
private:
// These variables have not yet been named, but some of them are partly
// known nevertheless:
//
// _unkValue1 - Unknown. Used for updating _unkValue2
// _unkValue2 - Unknown. Used for updating _unkValue4
// _unkValue4 - Unknown. Used for updating _unkValue5
// _unkValue5 - Unknown. Used for controlling updateCallback24().
// _unkValue6 - Unknown. Rhythm section volume?
// _unkValue7 - Unknown. Rhythm section volume?
// _unkValue8 - Unknown. Rhythm section volume?
// _unkValue9 - Unknown. Rhythm section volume?
// _unkValue10 - Unknown. Rhythm section volume?
// _unkValue11 - Unknown. Rhythm section volume?
// _unkValue12 - Unknown. Rhythm section volume?
// _unkValue13 - Unknown. Rhythm section volume?
// _unkValue14 - Unknown. Rhythm section volume?
// _unkValue15 - Unknown. Rhythm section volume?
// _unkValue16 - Unknown. Rhythm section volume?
// _unkValue17 - Unknown. Rhythm section volume?
// _unkValue18 - Unknown. Rhythm section volume?
// _unkValue19 - Unknown. Rhythm section volume?
// _unkValue20 - Unknown. Rhythm section volume?
// _freqTable[] - Probably frequences for the 12-tone scale.
// _unkTable2[] - Unknown. Currently only used by updateCallback46()
// _unkTable2_1[] - One of the tables in _unkTable2[]
// _unkTable2_2[] - One of the tables in _unkTable2[]
// _unkTable2_3[] - One of the tables in _unkTable2[]
int _curChannel;
uint8 _soundTrigger;
uint16 _rnd;
uint8 _unkValue1;
uint8 _unkValue2;
uint8 _callbackTimer;
uint8 _unkValue4;
uint8 _unkValue5;
uint8 _unkValue6;
uint8 _unkValue7;
uint8 _unkValue8;
uint8 _unkValue9;
uint8 _unkValue10;
uint8 _unkValue11;
uint8 _unkValue12;
uint8 _unkValue13;
uint8 _unkValue14;
uint8 _unkValue15;
uint8 _unkValue16;
uint8 _unkValue17;
uint8 _unkValue18;
uint8 _unkValue19;
uint8 _unkValue20;
OPL::OPL *_adlib;
uint8 *_soundData;
uint32 _soundDataSize;
struct QueueEntry {
QueueEntry() : data(0), id(0), volume(0) {}
QueueEntry(uint8 *ptr, uint8 track, uint8 vol) : data(ptr), id(track), volume(vol) {}
uint8 *data;
uint8 id;
uint8 volume;
};
QueueEntry _programQueue[16];
int _programStartTimeout;
int _programQueueStart, _programQueueEnd;
bool _retrySounds;
void adjustSfxData(uint8 *data, int volume);
uint8 *_sfxPointer;
int _sfxPriority;
int _sfxVelocity;
Channel _channels[10];
uint8 _vibratoAndAMDepthBits;
uint8 _rhythmSectionBits;
uint8 _curRegOffset;
uint8 _tempo;
const uint8 *_tablePtr1;
const uint8 *_tablePtr2;
static const uint8 _regOffset[];
static const uint16 _freqTable[];
static const uint8 *const _unkTable2[];
static const uint8 _unkTable2_1[];
static const uint8 _unkTable2_2[];
static const uint8 _unkTable2_3[];
static const uint8 _pitchBendTables[][32];
uint16 _syncJumpMask;
Common::Mutex _mutex;
Audio::Mixer *_mixer;
uint8 _musicVolume, _sfxVolume;
int _numPrograms;
int _version;
};
AdLibDriver::AdLibDriver(Audio::Mixer *mixer, int version) {
setupParserOpcodeTable();
_version = version;
_numPrograms = (_version == 1) ? 150 : ((_version == 4) ? 500 : 250);
_mixer = mixer;
_adlib = OPL::Config::create();
if (!_adlib || !_adlib->init())
error("Failed to create OPL");
memset(_channels, 0, sizeof(_channels));
_soundData = 0;
_soundDataSize = 0;
_vibratoAndAMDepthBits = _curRegOffset = 0;
_curChannel = _rhythmSectionBits = 0;
_rnd = 0x1234;
_tempo = 0;
_soundTrigger = 0;
_programStartTimeout = 0;
_callbackTimer = 0xFF;
_unkValue1 = _unkValue2 = _unkValue4 = _unkValue5 = 0;
_unkValue6 = _unkValue7 = _unkValue8 = _unkValue9 = _unkValue10 = 0;
_unkValue11 = _unkValue12 = _unkValue13 = _unkValue14 = _unkValue15 =
_unkValue16 = _unkValue17 = _unkValue18 = _unkValue19 = _unkValue20 = 0;
_tablePtr1 = _tablePtr2 = 0;
_syncJumpMask = 0;
_musicVolume = 0;
_sfxVolume = 0;
_sfxPointer = 0;
_programQueueStart = _programQueueEnd = 0;
_retrySounds = false;
_adlib->start(new Common::Functor0Mem<void, AdLibDriver>(this, &AdLibDriver::callback), CALLBACKS_PER_SECOND);
}
AdLibDriver::~AdLibDriver() {
delete _adlib;
_adlib = 0;
}
void AdLibDriver::setMusicVolume(uint8 volume) {
Common::StackLock lock(_mutex);
_musicVolume = volume;
for (uint i = 0; i < 6; ++i) {
Channel &chan = _channels[i];
chan.volumeModifier = volume;
const uint8 regOffset = _regOffset[i];
// Level Key Scaling / Total Level
writeOPL(0x40 + regOffset, calculateOpLevel1(chan));
writeOPL(0x43 + regOffset, calculateOpLevel2(chan));
}
// For now we use the music volume for both sfx and music in Kyra1 and EoB
if (_version < 4) {
_sfxVolume = volume;
for (uint i = 6; i < 9; ++i) {
Channel &chan = _channels[i];
chan.volumeModifier = volume;
const uint8 regOffset = _regOffset[i];
// Level Key Scaling / Total Level
writeOPL(0x40 + regOffset, calculateOpLevel1(chan));
writeOPL(0x43 + regOffset, calculateOpLevel2(chan));
}
}
}
void AdLibDriver::setSfxVolume(uint8 volume) {
// We only support sfx volume in version 4 games.
if (_version < 4)
return;
Common::StackLock lock(_mutex);
_sfxVolume = volume;
for (uint i = 6; i < 9; ++i) {
Channel &chan = _channels[i];
chan.volumeModifier = volume;
const uint8 regOffset = _regOffset[i];
// Level Key Scaling / Total Level
writeOPL(0x40 + regOffset, calculateOpLevel1(chan));
writeOPL(0x43 + regOffset, calculateOpLevel2(chan));
}
}
void AdLibDriver::initDriver() {
Common::StackLock lock(_mutex);
resetAdLibState();
}
void AdLibDriver::setSoundData(uint8 *data, uint32 size) {
Common::StackLock lock(_mutex);
// Drop all tracks that are still queued. These would point to the old
// sound data.
_programQueueStart = _programQueueEnd = 0;
memset(_programQueue, 0, sizeof(_programQueue));
if (_soundData) {
delete[] _soundData;
_soundData = _sfxPointer = 0;
}
_soundData = data;
_soundDataSize = size;
}
void AdLibDriver::queueTrack(int track, int volume) {
Common::StackLock lock(_mutex);
uint8 *trackData = getProgram(track);
if (!trackData)
return;
// Don't drop tracks in EoB. The queue is always full there if a couple of monsters are around.
// If we drop the incoming tracks we get no sound effects, but tons of warnings instead.
if (_version >= 3 && _programQueueEnd == _programQueueStart && _programQueue[_programQueueEnd].data != 0) {
warning("AdLibDriver: Program queue full, dropping track %d", track);
return;
}
_programQueue[_programQueueEnd] = QueueEntry(trackData, track, volume);
_programQueueEnd = (_programQueueEnd + 1) & 15;
}
bool AdLibDriver::isChannelPlaying(int channel) const {
Common::StackLock lock(_mutex);
assert(channel >= 0 && channel <= 9);
return (_channels[channel].dataptr != 0);
}
void AdLibDriver::stopAllChannels() {
Common::StackLock lock(_mutex);
for (int channel = 0; channel <= 9; ++channel) {
_curChannel = channel;
Channel &chan = _channels[_curChannel];
chan.priority = 0;
chan.dataptr = 0;
if (channel != 9)
noteOff(chan);
}
_retrySounds = false;
}
// timer callback
void AdLibDriver::callback() {
Common::StackLock lock(_mutex);
if (_programStartTimeout)
--_programStartTimeout;
else
setupPrograms();
executePrograms();
uint8 temp = _callbackTimer;
_callbackTimer += _tempo;
if (_callbackTimer < temp) {
if (!(--_unkValue2)) {
_unkValue2 = _unkValue1;
++_unkValue4;
}
}
}
void AdLibDriver::setupPrograms() {
// If there is no program queued, we skip this.
if (_programQueueStart == _programQueueEnd)
return;
uint8 *ptr = _programQueue[_programQueueStart].data;
// The AdLib driver (in its old versions used for EOB) is not suitable for modern (fast) CPUs.
// The stop sound track (track 0 which has a priority of 50) will often still be busy when the
// next sound (with a lower priority) starts which will cause that sound to be skipped. We simply
// restart incoming sounds during stop sound execution.
// UPDATE: This stilly applies after introduction of the _programQueue.
QueueEntry retrySound;
if (_version < 3 && _programQueue[_programQueueStart].id == 0)
_retrySounds = true;
else if (_retrySounds)
retrySound = _programQueue[_programQueueStart];
// Adjust data in case we hit a sound effect.
adjustSfxData(ptr, _programQueue[_programQueueStart].volume);
// Clear the queue entry
_programQueue[_programQueueStart].data = 0;
_programQueueStart = (_programQueueStart + 1) & 15;
const int chan = *ptr++;
const int priority = *ptr++;
// Only start this sound if its priority is higher than the one
// already playing.
Channel &channel = _channels[chan];
if (priority >= channel.priority) {
initChannel(channel);
channel.priority = priority;
channel.dataptr = ptr;
channel.tempo = 0xFF;
channel.position = 0xFF;
channel.duration = 1;
if (chan <= 5)
channel.volumeModifier = _musicVolume;
else
channel.volumeModifier = _sfxVolume;
unkOutput2(chan);
// We need to wait two callback calls till we can start another track.
// This is (probably) required to assure that the sfx are started with
// the correct priority and velocity.
_programStartTimeout = 2;
retrySound = QueueEntry();
}
if (retrySound.data) {
debugC(9, kDebugLevelSound, "AdLibDriver::setupPrograms(): WORKAROUND - Restarting skipped sound %d)", retrySound.id);
queueTrack(retrySound.id, retrySound.volume);
}
}
void AdLibDriver::adjustSfxData(uint8 *ptr, int volume) {
// Check whether we need to reset the data of an old sfx which has been
// started.
if (_sfxPointer) {
_sfxPointer[1] = _sfxPriority;
_sfxPointer[3] = _sfxVelocity;
_sfxPointer = 0;
}
// Only music tracks are started on channel 9, thus we need to make sure
// we do not have a music track here.
if (*ptr == 9)
return;
// Store the pointer so we can reset the data when a new program is started.
_sfxPointer = ptr;
// Store the old values.
_sfxPriority = ptr[1];
_sfxVelocity = ptr[3];
// Adjust the values.
if (volume != 0xFF) {
if (_version >= 3) {
int newVal = ((((ptr[3]) + 63) * volume) >> 8) & 0xFF;
ptr[3] = -newVal + 63;
ptr[1] = ((ptr[1] * volume) >> 8) & 0xFF;
} else {
int newVal = ((_sfxVelocity << 2) ^ 0xFF) * volume;
ptr[3] = (newVal >> 10) ^ 0x3F;
ptr[1] = newVal >> 11;
}
}
}
// A few words on opcode parsing and timing:
//
// First of all, We simulate a timer callback 72 times per second. Each timeout
// we update each channel that has something to play.
//
// Each channel has its own individual tempo, which is added to its position.
// This will frequently cause the position to "wrap around" but that is
// intentional. In fact, it's the signal to go ahead and do more stuff with
// that channel.
//
// Each channel also has a duration, indicating how much time is left on the
// its current task. This duration is decreased by one. As long as it still has
// not reached zero, the only thing that can happen is that the note is turned
// off depending on manual or automatic note spacing. Once the duration reaches
// zero, a new set of musical opcodes are executed.
//
// An opcode is one byte, followed by a variable number of parameters. Since
// most opcodes have at least one one-byte parameter, we read that as well. Any
// opcode that doesn't have that one parameter is responsible for moving the
// data pointer back again.
//
// If the most significant bit of the opcode is 1, it's a function; call it.
// The opcode functions return either 0 (continue), 1 (stop) or 2 (stop, and do
// not run the effects callbacks).
//
// If the most significant bit of the opcode is 0, it's a note, and the first
// parameter is its duration. (There are cases where the duration is modified
// but that's an exception.) The note opcode is assumed to return 1, and is the
// last opcode unless its duration is zero.
//
// Finally, most of the times that the callback is called, it will invoke the
// effects callbacks. The final opcode in a set can prevent this, if it's a
// function and it returns anything other than 1.
void AdLibDriver::executePrograms() {
// Each channel runs its own program. There are ten channels: One for
// each AdLib channel (0-8), plus one "control channel" (9) which is
// the one that tells the other channels what to do.
// This is where we ensure that channels that are made to jump "in
// sync" do so.
if (_syncJumpMask) {
bool forceUnlock = true;
for (_curChannel = 9; _curChannel >= 0; --_curChannel) {
if ((_syncJumpMask & (1 << _curChannel)) == 0)
continue;
if (_channels[_curChannel].dataptr && !_channels[_curChannel].lock)
forceUnlock = false;
}
if (forceUnlock) {
for (_curChannel = 9; _curChannel >= 0; --_curChannel)
if (_syncJumpMask & (1 << _curChannel))
_channels[_curChannel].lock = false;
}
}
for (_curChannel = 9; _curChannel >= 0; --_curChannel) {
int result = 1;
if (!_channels[_curChannel].dataptr)
continue;
if (_channels[_curChannel].lock && (_syncJumpMask & (1 << _curChannel)))
continue;
Channel &channel = _channels[_curChannel];
if (_curChannel == 9)
_curRegOffset = 0;
else
_curRegOffset = _regOffset[_curChannel];
if (channel.tempoReset)
channel.tempo = _tempo;
uint8 backup = channel.position;
channel.position += channel.tempo;
if (channel.position < backup) {
if (--channel.duration) {
if (channel.duration == channel.spacing2)
noteOff(channel);
if (channel.duration == channel.spacing1 && _curChannel != 9)
noteOff(channel);
} else {
// An opcode is not allowed to modify its own
// data pointer except through the 'dataptr'
// parameter. To enforce that, we have to work
// on a copy of the data pointer.
//
// This fixes a subtle music bug where the
// wrong music would play when getting the
// quill in Kyra 1.
const uint8 *dataptr = channel.dataptr;
while (dataptr) {
uint8 opcode = *dataptr++;
uint8 param = *dataptr++;
if (opcode & 0x80) {
opcode &= 0x7F;
if (opcode >= _parserOpcodeTableSize)
opcode = _parserOpcodeTableSize - 1;
debugC(9, kDebugLevelSound, "Calling opcode '%s' (%d) (channel: %d)", _parserOpcodeTable[opcode].name, opcode, _curChannel);
result = (this->*(_parserOpcodeTable[opcode].function))(dataptr, channel, param);
channel.dataptr = dataptr;
if (result)
break;
} else {
debugC(9, kDebugLevelSound, "Note on opcode 0x%02X (duration: %d) (channel: %d)", opcode, param, _curChannel);
setupNote(opcode, channel);
noteOn(channel);
setupDuration(param, channel);
if (param) {
// We need to make sure we are always running the
// effects after this. Otherwise some sounds are
// wrong. Like the sfx when bumping into a wall in
// LoL.
result = 1;
channel.dataptr = dataptr;
break;
}
}
}
}
}
if (result == 1) {
if (channel.primaryEffect)
(this->*(channel.primaryEffect))(channel);
if (channel.secondaryEffect)
(this->*(channel.secondaryEffect))(channel);
}
}
}
//
void AdLibDriver::resetAdLibState() {
debugC(9, kDebugLevelSound, "resetAdLibState()");
_rnd = 0x1234;
// Authorize the control of the waveforms
writeOPL(0x01, 0x20);
// Select FM music mode
writeOPL(0x08, 0x00);
// I would guess the main purpose of this is to turn off the rhythm,
// thus allowing us to use 9 melodic voices instead of 6.
writeOPL(0xBD, 0x00);
int loop = 10;
while (loop--) {
if (loop != 9) {
// Silence the channel
writeOPL(0x40 + _regOffset[loop], 0x3F);
writeOPL(0x43 + _regOffset[loop], 0x3F);
}
initChannel(_channels[loop]);
}
}
// Old calling style: output0x388(0xABCD)
// New calling style: writeOPL(0xAB, 0xCD)
void AdLibDriver::writeOPL(byte reg, byte val) {
_adlib->writeReg(reg, val);
}
void AdLibDriver::initChannel(Channel &channel) {
debugC(9, kDebugLevelSound, "initChannel(%lu)", (long)(&channel - _channels));
memset(&channel.dataptr, 0, sizeof(Channel) - ((char *)&channel.dataptr - (char *)&channel));
channel.tempo = 0xFF;
channel.priority = 0;
// normally here are nullfuncs but we set 0 for now
channel.primaryEffect = 0;
channel.secondaryEffect = 0;
channel.spacing1 = 1;
channel.lock = false;
}
void AdLibDriver::noteOff(Channel &channel) {
debugC(9, kDebugLevelSound, "noteOff(%lu)", (long)(&channel - _channels));
// The control channel has no corresponding AdLib channel
if (_curChannel >= 9)
return;
// When the rhythm section is enabled, channels 6, 7 and 8 are special.
if (_rhythmSectionBits && _curChannel >= 6)
return;
// This means the "Key On" bit will always be 0
channel.regBx &= 0xDF;
// Octave / F-Number / Key-On
writeOPL(0xB0 + _curChannel, channel.regBx);
}
void AdLibDriver::unkOutput2(uint8 chan) {
debugC(9, kDebugLevelSound, "unkOutput2(%d)", chan);
// The control channel has no corresponding AdLib channel
if (chan >= 9)
return;
// I believe this has to do with channels 6, 7, and 8 being special
// when AdLib's rhythm section is enabled.
if (_rhythmSectionBits && chan >= 6)
return;
uint8 offset = _regOffset[chan];
// The channel is cleared: First the attack/delay rate, then the
// sustain level/release rate, and finally the note is turned off.
writeOPL(0x60 + offset, 0xFF);
writeOPL(0x63 + offset, 0xFF);
writeOPL(0x80 + offset, 0xFF);
writeOPL(0x83 + offset, 0xFF);
writeOPL(0xB0 + chan, 0x00);
// ...and then the note is turned on again, with whatever value is
// still lurking in the A0 + chan register, but everything else -
// including the two most significant frequency bit, and the octave -
// set to zero.
//
// This is very strange behavior, and causes problems with the ancient
// FMOPL code we borrowed from AdPlug. I've added a workaround. See
// audio/softsynth/opl/mame.cpp for more details.
//
// Fortunately, the more modern DOSBox FMOPL code does not seem to have
// any trouble with this.
writeOPL(0xB0 + chan, 0x20);
}
// I believe this is a random number generator. It actually does seem to
// generate an even distribution of almost all numbers from 0 through 65535,
// though in my tests some numbers were never generated.
uint16 AdLibDriver::getRandomNr() {
_rnd += 0x9248;
uint16 lowBits = _rnd & 7;
_rnd >>= 3;
_rnd |= (lowBits << 13);
return _rnd;
}
void AdLibDriver::setupDuration(uint8 duration, Channel &channel) {
debugC(9, kDebugLevelSound, "setupDuration(%d, %lu)", duration, (long)(&channel - _channels));
if (channel.durationRandomness) {
channel.duration = duration + (getRandomNr() & channel.durationRandomness);
return;
}
if (channel.fractionalSpacing)
channel.spacing2 = (duration >> 3) * channel.fractionalSpacing;
channel.duration = duration;
}
// This function may or may not play the note. It's usually followed by a call
// to noteOn(), which will always play the current note.
void AdLibDriver::setupNote(uint8 rawNote, Channel &channel, bool flag) {
debugC(9, kDebugLevelSound, "setupNote(%d, %lu)", rawNote, (long)(&channel - _channels));
if (_curChannel >= 9)
return;
channel.rawNote = rawNote;
int8 note = (rawNote & 0x0F) + channel.baseNote;
int8 octave = ((rawNote + channel.baseOctave) >> 4) & 0x0F;
// There are only twelve notes. If we go outside that, we have to
// adjust the note and octave.
if (note >= 12) {
note -= 12;
octave++;
} else if (note < 0) {
note += 12;
octave--;
}
// The calculation of frequency looks quite different from the original
// disassembly at a first glance, but when you consider that the
// largest possible value would be 0x0246 + 0xFF + 0x47 (and that's if
// baseFreq is unsigned), freq is still a 10-bit value, just as it
// should be to fit in the Ax and Bx registers.
//
// If it were larger than that, it could have overflowed into the
// octave bits, and that could possibly have been used in some sound.
// But as it is now, I can't see any way it would happen.
uint16 freq = _freqTable[note] + channel.baseFreq;
// When called from callback 41, the behavior is slightly different:
// We adjust the frequency, even when channel.pitchBend is 0.
if (channel.pitchBend || flag) {
const uint8 *table;
if (channel.pitchBend >= 0) {
table = _pitchBendTables[(channel.rawNote & 0x0F) + 2];
freq += table[channel.pitchBend];
} else {
table = _pitchBendTables[channel.rawNote & 0x0F];
freq -= table[-channel.pitchBend];
}
}
channel.regAx = freq & 0xFF;
channel.regBx = (channel.regBx & 0x20) | (octave << 2) | ((freq >> 8) & 0x03);
// Keep the note on or off
writeOPL(0xA0 + _curChannel, channel.regAx);
writeOPL(0xB0 + _curChannel, channel.regBx);
}
void AdLibDriver::setupInstrument(uint8 regOffset, const uint8 *dataptr, Channel &channel) {
debugC(9, kDebugLevelSound, "setupInstrument(%d, %p, %lu)", regOffset, (const void *)dataptr, (long)(&channel - _channels));
if (_curChannel >= 9)
return;
// Amplitude Modulation / Vibrato / Envelope Generator Type /
// Keyboard Scaling Rate / Modulator Frequency Multiple
writeOPL(0x20 + regOffset, *dataptr++);
writeOPL(0x23 + regOffset, *dataptr++);
uint8 temp = *dataptr++;
// Feedback / Algorithm
// It is very likely that _curChannel really does refer to the same
// channel as regOffset, but there's only one Cx register per channel.
writeOPL(0xC0 + _curChannel, temp);
// The algorithm bit. I don't pretend to understand this fully, but
// "If set to 0, operator 1 modulates operator 2. In this case,
// operator 2 is the only one producing sound. If set to 1, both
// operators produce sound directly. Complex sounds are more easily
// created if the algorithm is set to 0."
channel.twoChan = temp & 1;
// Waveform Select
writeOPL(0xE0 + regOffset, *dataptr++);
writeOPL(0xE3 + regOffset, *dataptr++);
channel.opLevel1 = *dataptr++;
channel.opLevel2 = *dataptr++;
// Level Key Scaling / Total Level
writeOPL(0x40 + regOffset, calculateOpLevel1(channel));
writeOPL(0x43 + regOffset, calculateOpLevel2(channel));
// Attack Rate / Decay Rate
writeOPL(0x60 + regOffset, *dataptr++);
writeOPL(0x63 + regOffset, *dataptr++);
// Sustain Level / Release Rate
writeOPL(0x80 + regOffset, *dataptr++);
writeOPL(0x83 + regOffset, *dataptr++);
}
// Apart from playing the note, this function also updates the variables for
// primary effect 2.
void AdLibDriver::noteOn(Channel &channel) {
debugC(9, kDebugLevelSound, "noteOn(%lu)", (long)(&channel - _channels));
// The "note on" bit is set, and the current note is played.
if (_curChannel >= 9)
return;
channel.regBx |= 0x20;
writeOPL(0xB0 + _curChannel, channel.regBx);
int8 shift = 9 - channel.unk33;
uint16 temp = channel.regAx | (channel.regBx << 8);
channel.unk37 = ((temp & 0x3FF) >> shift) & 0xFF;
channel.unk38 = channel.unk36;
}
void AdLibDriver::adjustVolume(Channel &channel) {
debugC(9, kDebugLevelSound, "adjustVolume(%lu)", (long)(&channel - _channels));
if (_curChannel >= 9)
return;
// Level Key Scaling / Total Level
writeOPL(0x43 + _regOffset[_curChannel], calculateOpLevel2(channel));
if (channel.twoChan)
writeOPL(0x40 + _regOffset[_curChannel], calculateOpLevel1(channel));
}
// This is presumably only used for some sound effects, e.g. Malcolm blowing up
// the trees in the intro (but not the effect where he "booby-traps" the big
// tree) and turning Kallak to stone. Related functions and variables:
//
// update_setupPrimaryEffect1()
// - Initializes unk29, unk30 and unk31
// - unk29 is not further modified
// - unk30 is not further modified, except by update_removePrimaryEffect1()
//
// update_removePrimaryEffect1()
// - Deinitializes unk30
//
// unk29 - determines how often the notes are played
// unk30 - modifies the frequency
// unk31 - determines how often the notes are played
void AdLibDriver::primaryEffect1(Channel &channel) {
debugC(9, kDebugLevelSound, "Calling primaryEffect1 (channel: %d)", _curChannel);
if (_curChannel >= 9)
return;
uint8 temp = channel.unk31;
channel.unk31 += channel.unk29;
if (channel.unk31 >= temp)
return;
// Initialize unk1 to the current frequency
int16 unk1 = ((channel.regBx & 3) << 8) | channel.regAx;
// This is presumably to shift the "note on" bit so far to the left
// that it won't be affected by any of the calculations below.
int16 unk2 = ((channel.regBx & 0x20) << 8) | (channel.regBx & 0x1C);
int16 unk3 = (int16)channel.unk30;
if (unk3 >= 0) {
unk1 += unk3;
if (unk1 >= 734) {
// The new frequency is too high. Shift it down and go
// up one octave.
unk1 >>= 1;
if (!(unk1 & 0x3FF))
++unk1;
unk2 = (unk2 & 0xFF00) | ((unk2 + 4) & 0xFF);
unk2 &= 0xFF1C;
}
} else {
unk1 += unk3;
if (unk1 < 388) {
// The new frequency is too low. Shift it up and go
// down one octave.
unk1 <<= 1;
if (!(unk1 & 0x3FF))
--unk1;
unk2 = (unk2 & 0xFF00) | ((unk2 - 4) & 0xFF);
unk2 &= 0xFF1C;
}
}
// Make sure that the new frequency is still a 10-bit value.
unk1 &= 0x3FF;
writeOPL(0xA0 + _curChannel, unk1 & 0xFF);
channel.regAx = unk1 & 0xFF;
// Shift down the "note on" bit again.
uint8 value = unk1 >> 8;
value |= (unk2 >> 8) & 0xFF;
value |= unk2 & 0xFF;
writeOPL(0xB0 + _curChannel, value);
channel.regBx = value;
}
// This is presumably only used for some sound effects, e.g. Malcolm entering
// and leaving Kallak's hut. Related functions and variables:
//
// update_setupPrimaryEffect2()
// - Initializes unk32, unk33, unk34, unk35 and unk36
// - unk32 is not further modified
// - unk33 is not further modified
// - unk34 is a countdown that gets reinitialized to unk35 on zero
// - unk35 is based on unk34 and not further modified
// - unk36 is not further modified
//
// noteOn()
// - Plays the current note
// - Updates unk37 with a new (lower?) frequency
// - Copies unk36 to unk38. The unk38 variable is a countdown.
//
// unk32 - determines how often the notes are played
// unk33 - modifies the frequency
// unk34 - countdown, updates frequency on zero
// unk35 - initializer for unk34 countdown
// unk36 - initializer for unk38 countdown
// unk37 - frequency
// unk38 - countdown, begins playing on zero
// unk41 - determines how often the notes are played
//
// Note that unk41 is never initialized. Not that it should matter much, but it
// is a bit sloppy.
void AdLibDriver::primaryEffect2(Channel &channel) {
debugC(9, kDebugLevelSound, "Calling primaryEffect2 (channel: %d)", _curChannel);
if (_curChannel >= 9)
return;
if (channel.unk38) {
--channel.unk38;
return;
}
uint8 temp = channel.unk41;
channel.unk41 += channel.unk32;
if (channel.unk41 < temp) {
uint16 unk1 = channel.unk37;
if (!(--channel.unk34)) {
unk1 ^= 0xFFFF;
++unk1;
channel.unk37 = unk1;
channel.unk34 = channel.unk35;
}
uint16 unk2 = (channel.regAx | (channel.regBx << 8)) & 0x3FF;
unk2 += unk1;
channel.regAx = unk2 & 0xFF;
channel.regBx = (channel.regBx & 0xFC) | (unk2 >> 8);
// Octave / F-Number / Key-On
writeOPL(0xA0 + _curChannel, channel.regAx);
writeOPL(0xB0 + _curChannel, channel.regBx);
}
}
// I don't know where this is used. The same operation is performed several
// times on the current channel, using a chunk of the _soundData[] buffer for
// parameters. The parameters are used starting at the end of the chunk.
//
// Since we use _curRegOffset to specify the final register, it's quite
// unlikely that this function is ever used to play notes. It's probably only
// used to modify the sound. Another thing that supports this idea is that it
// can be combined with any of the effects callbacks above.
//
// Related functions and variables:
//
// update_setupSecondaryEffect1()
// - Initialies unk18, unk19, unk20, unk21, unk22 and offset
// - unk19 is not further modified
// - unk20 is not further modified
// - unk22 is not further modified
// - offset is not further modified
//
// unk18 - determines how often the operation is performed
// unk19 - determines how often the operation is performed
// unk20 - the start index into the data chunk
// unk21 - the current index into the data chunk
// unk22 - the operation to perform
// offset - the offset to the data chunk
void AdLibDriver::secondaryEffect1(Channel &channel) {
debugC(9, kDebugLevelSound, "Calling secondaryEffect1 (channel: %d)", _curChannel);
if (_curChannel >= 9)
return;
uint8 temp = channel.unk18;
channel.unk18 += channel.unk19;
if (channel.unk18 < temp) {
if (--channel.unk21 < 0)
channel.unk21 = channel.unk20;
writeOPL(channel.unk22 + _curRegOffset, _soundData[channel.offset + channel.unk21]);
}
}
uint8 AdLibDriver::calculateOpLevel1(Channel &channel) {
int8 value = channel.opLevel1 & 0x3F;
if (channel.twoChan) {
value += channel.opExtraLevel1;
value += channel.opExtraLevel2;
uint16 level3 = (channel.opExtraLevel3 ^ 0x3F) * channel.volumeModifier;
if (level3) {
level3 += 0x3F;
level3 >>= 8;
}
value += level3 ^ 0x3F;
}
value = CLIP<int8>(value, 0, 0x3F);
if (!channel.volumeModifier)
value = 0x3F;
// Preserve the scaling level bits from opLevel1
return checkValue(value) | (channel.opLevel1 & 0xC0);
}
uint8 AdLibDriver::calculateOpLevel2(Channel &channel) {
int8 value = channel.opLevel2 & 0x3F;
value += channel.opExtraLevel1;
value += channel.opExtraLevel2;
uint16 level3 = (channel.opExtraLevel3 ^ 0x3F) * channel.volumeModifier;
if (level3) {
level3 += 0x3F;
level3 >>= 8;
}
value += level3 ^ 0x3F;
value = CLIP<int8>(value, 0, 0x3F);
if (!channel.volumeModifier)
value = 0x3F;
// Preserve the scaling level bits from opLevel2
return checkValue(value) | (channel.opLevel2 & 0xC0);
}
// parser opcodes
int AdLibDriver::update_setRepeat(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.repeatCounter = value;
return 0;
}
int AdLibDriver::update_checkRepeat(const uint8 *&dataptr, Channel &channel, uint8 value) {
++dataptr;
if (--channel.repeatCounter) {
int16 add = READ_LE_UINT16(dataptr - 2);
dataptr += add;
}
return 0;
}
int AdLibDriver::update_setupProgram(const uint8 *&dataptr, Channel &channel, uint8 value) {
if (value == 0xFF)
return 0;
const uint8 *ptr = getProgram(value);
// In case we encounter an invalid program we simply ignore it and do
// nothing instead. The original did not care about invalid programs and
// simply tried to play them anyway... But to avoid crashes due we ingore
// them.
// This, for example, happens in the Lands of Lore intro when Scotia gets
// the ring in the intro.
if (!ptr) {
debugC(3, kDebugLevelSound, "AdLibDriver::update_setupProgram: Invalid program %d specified", value);
return 0;
}
uint8 chan = *ptr++;
uint8 priority = *ptr++;
Channel &channel2 = _channels[chan];
if (priority >= channel2.priority) {
// We keep new tracks from being started for two further iterations of
// the callback. This assures the correct velocity is used for this
// program.
_programStartTimeout = 2;
initChannel(channel2);
channel2.priority = priority;
channel2.dataptr = ptr;
channel2.tempo = 0xFF;
channel2.position = 0xFF;
channel2.duration = 1;
if (chan <= 5)
channel2.volumeModifier = _musicVolume;
else
channel2.volumeModifier = _sfxVolume;
unkOutput2(chan);
}
return 0;
}
int AdLibDriver::update_setNoteSpacing(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.spacing1 = value;
return 0;
}
int AdLibDriver::update_jump(const uint8 *&dataptr, Channel &channel, uint8 value) {
--dataptr;
int16 add = READ_LE_UINT16(dataptr); dataptr += 2;
if (_version == 1)
dataptr = _soundData + add - 191;
else
dataptr += add;
if (_syncJumpMask & (1 << (&channel - _channels)))
channel.lock = true;
return 0;
}
int AdLibDriver::update_jumpToSubroutine(const uint8 *&dataptr, Channel &channel, uint8 value) {
--dataptr;
int16 add = READ_LE_UINT16(dataptr); dataptr += 2;
channel.dataptrStack[channel.dataptrStackPos++] = dataptr;
if (_version < 3)
dataptr = _soundData + add - 191;
else
dataptr += add;
return 0;
}
int AdLibDriver::update_returnFromSubroutine(const uint8 *&dataptr, Channel &channel, uint8 value) {
dataptr = channel.dataptrStack[--channel.dataptrStackPos];
return 0;
}
int AdLibDriver::update_setBaseOctave(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.baseOctave = value;
return 0;
}
int AdLibDriver::update_stopChannel(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.priority = 0;
if (_curChannel != 9)
noteOff(channel);
dataptr = 0;
return 2;
}
int AdLibDriver::update_playRest(const uint8 *&dataptr, Channel &channel, uint8 value) {
setupDuration(value, channel);
noteOff(channel);
return (value != 0);
}
int AdLibDriver::update_writeAdLib(const uint8 *&dataptr, Channel &channel, uint8 value) {
writeOPL(value, *dataptr++);
return 0;
}
int AdLibDriver::update_setupNoteAndDuration(const uint8 *&dataptr, Channel &channel, uint8 value) {
setupNote(value, channel);
value = *dataptr++;
setupDuration(value, channel);
return (value != 0);
}
int AdLibDriver::update_setBaseNote(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.baseNote = value;
return 0;
}
int AdLibDriver::update_setupSecondaryEffect1(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.unk18 = value;
channel.unk19 = value;
channel.unk20 = channel.unk21 = *dataptr++;
channel.unk22 = *dataptr++;
// WORKAROUND: The original code reads a true offset which later gets translated via xlat (in
// the current segment). This means that the outcome depends on the sound data offset.
// Unfortunately this offset is different in most implementations of the audio driver and
// probably also different from the offset assumed by the sequencer.
// It seems that the driver assumes an offset of 191 which is wrong for all the game driver
// implementations.
// This bug has probably not been noticed, since the effect is hardly used and the sounds are
// not necessarily worse. I noticed the difference between ScummVM and DOSBox for the EOB II
// teleporter sound. I also found the location of the table which is supposed to be used here
// (simple enough: it is located at the end of the track after the 0x88 ending opcode).
// Teleporters in EOB I and II now sound exactly the same which I am sure was the intended way,
// since the sound data is exactly the same.
// In DOSBox the teleporters will sound different in EOB I and II, due to different sound
// data offsets.
channel.offset = READ_LE_UINT16(dataptr) - 191; dataptr += 2;
channel.secondaryEffect = &AdLibDriver::secondaryEffect1;
return 0;
}
int AdLibDriver::update_stopOtherChannel(const uint8 *&dataptr, Channel &channel, uint8 value) {
Channel &channel2 = _channels[value];
channel2.duration = 0;
channel2.priority = 0;
channel2.dataptr = 0;
return 0;
}
int AdLibDriver::update_waitForEndOfProgram(const uint8 *&dataptr, Channel &channel, uint8 value) {
const uint8 *ptr = getProgram(value);
// Safety check in case an invalid program is specified. This would make
// getProgram return a nullptr and thus cause invalid memory reads.
if (!ptr) {
debugC(3, kDebugLevelSound, "AdLibDriver::update_waitForEndOfProgram: Invalid program %d specified", value);
return 0;
}
uint8 chan = *ptr;
if (!_channels[chan].dataptr)
return 0;
dataptr -= 2;
return 2;
}
int AdLibDriver::update_setupInstrument(const uint8 *&dataptr, Channel &channel, uint8 value) {
const uint8 *instrument = getInstrument(value);
// We add a safety check to avoid setting up invalid instruments. This is
// not done in the original. However, to avoid crashes due to invalid
// memory reads we simply ignore the request.
// This happens, for example, in Hand of Fate when using the swampsnake
// potion on Zanthia to scare off the rat in the cave in the first chapter
// of the game.
if (!instrument) {
debugC(3, kDebugLevelSound, "AdLibDriver::update_setupInstrument: Invalid instrument %d specified", value);
return 0;
}
setupInstrument(_curRegOffset, instrument, channel);
return 0;
}
int AdLibDriver::update_setupPrimaryEffect1(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.unk29 = value;
channel.unk30 = READ_BE_UINT16(dataptr);
dataptr += 2;
channel.primaryEffect = &AdLibDriver::primaryEffect1;
channel.unk31 = 0xFF;
return 0;
}
int AdLibDriver::update_removePrimaryEffect1(const uint8 *&dataptr, Channel &channel, uint8 value) {
--dataptr;
channel.primaryEffect = 0;
channel.unk30 = 0;
return 0;
}
int AdLibDriver::update_setBaseFreq(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.baseFreq = value;
return 0;
}
int AdLibDriver::update_setupPrimaryEffect2(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.unk32 = value;
channel.unk33 = *dataptr++;
uint8 temp = *dataptr++;
channel.unk34 = temp + 1;
channel.unk35 = temp << 1;
channel.unk36 = *dataptr++;
channel.primaryEffect = &AdLibDriver::primaryEffect2;
return 0;
}
int AdLibDriver::update_setPriority(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.priority = value;
return 0;
}
int AdLibDriver::updateCallback23(const uint8 *&dataptr, Channel &channel, uint8 value) {
value >>= 1;
_unkValue1 = _unkValue2 = value;
_callbackTimer = 0xFF;
_unkValue4 = _unkValue5 = 0;
return 0;
}
int AdLibDriver::updateCallback24(const uint8 *&dataptr, Channel &channel, uint8 value) {
if (_unkValue5) {
if (_unkValue4 & value) {
_unkValue5 = 0;
return 0;
}
}
if (!(value & _unkValue4))
++_unkValue5;
dataptr -= 2;
channel.duration = 1;
return 2;
}
int AdLibDriver::update_setExtraLevel1(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.opExtraLevel1 = value;
adjustVolume(channel);
return 0;
}
int AdLibDriver::update_setupDuration(const uint8 *&dataptr, Channel &channel, uint8 value) {
setupDuration(value, channel);
return (value != 0);
}
int AdLibDriver::update_playNote(const uint8 *&dataptr, Channel &channel, uint8 value) {
setupDuration(value, channel);
noteOn(channel);
return (value != 0);
}
int AdLibDriver::update_setFractionalNoteSpacing(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.fractionalSpacing = value & 7;
return 0;
}
int AdLibDriver::update_setTempo(const uint8 *&dataptr, Channel &channel, uint8 value) {
_tempo = value;
return 0;
}
int AdLibDriver::update_removeSecondaryEffect1(const uint8 *&dataptr, Channel &channel, uint8 value) {
--dataptr;
channel.secondaryEffect = 0;
return 0;
}
int AdLibDriver::update_setChannelTempo(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.tempo = value;
return 0;
}
int AdLibDriver::update_setExtraLevel3(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.opExtraLevel3 = value;
return 0;
}
int AdLibDriver::update_setExtraLevel2(const uint8 *&dataptr, Channel &channel, uint8 value) {
int channelBackUp = _curChannel;
_curChannel = value;
Channel &channel2 = _channels[value];
channel2.opExtraLevel2 = *dataptr++;
adjustVolume(channel2);
_curChannel = channelBackUp;
return 0;
}
int AdLibDriver::update_changeExtraLevel2(const uint8 *&dataptr, Channel &channel, uint8 value) {
int channelBackUp = _curChannel;
_curChannel = value;
Channel &channel2 = _channels[value];
channel2.opExtraLevel2 += *dataptr++;
adjustVolume(channel2);
_curChannel = channelBackUp;
return 0;
}
// Apart from initializing to zero, these two functions are the only ones that
// modify _vibratoAndAMDepthBits.
int AdLibDriver::update_setAMDepth(const uint8 *&dataptr, Channel &channel, uint8 value) {
if (value & 1)
_vibratoAndAMDepthBits |= 0x80;
else
_vibratoAndAMDepthBits &= 0x7F;
writeOPL(0xBD, _vibratoAndAMDepthBits);
return 0;
}
int AdLibDriver::update_setVibratoDepth(const uint8 *&dataptr, Channel &channel, uint8 value) {
if (value & 1)
_vibratoAndAMDepthBits |= 0x40;
else
_vibratoAndAMDepthBits &= 0xBF;
writeOPL(0xBD, _vibratoAndAMDepthBits);
return 0;
}
int AdLibDriver::update_changeExtraLevel1(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.opExtraLevel1 += value;
adjustVolume(channel);
return 0;
}
int AdLibDriver::updateCallback38(const uint8 *&dataptr, Channel &channel, uint8 value) {
int channelBackUp = _curChannel;
_curChannel = value;
Channel &channel2 = _channels[value];
channel2.duration = channel2.priority = 0;
channel2.dataptr = 0;
channel2.opExtraLevel2 = 0;
if (value != 9) {
uint8 outValue = _regOffset[value];
// Feedback strength / Connection type
writeOPL(0xC0 + _curChannel, 0x00);
// Key scaling level / Operator output level
writeOPL(0x43 + outValue, 0x3F);
// Sustain Level / Release Rate
writeOPL(0x83 + outValue, 0xFF);
// Key On / Octave / Frequency
writeOPL(0xB0 + _curChannel, 0x00);
}
_curChannel = channelBackUp;
return 0;
}
int AdLibDriver::updateCallback39(const uint8 *&dataptr, Channel &channel, uint8 value) {
if (_curChannel >= 9)
return 0;
uint16 unk = *dataptr++;
unk |= value << 8;
unk &= getRandomNr();
uint16 unk2 = ((channel.regBx & 0x1F) << 8) | channel.regAx;
unk2 += unk;
unk2 |= ((channel.regBx & 0x20) << 8);
// Frequency
writeOPL(0xA0 + _curChannel, unk2 & 0xFF);
// Key On / Octave / Frequency
writeOPL(0xB0 + _curChannel, (unk2 & 0xFF00) >> 8);
return 0;
}
int AdLibDriver::update_removePrimaryEffect2(const uint8 *&dataptr, Channel &channel, uint8 value) {
--dataptr;
channel.primaryEffect = 0;
return 0;
}
int AdLibDriver::update_pitchBend(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.pitchBend = value;
setupNote(channel.rawNote, channel, true);
return 0;
}
int AdLibDriver::update_resetToGlobalTempo(const uint8 *&dataptr, Channel &channel, uint8 value) {
--dataptr;
channel.tempo = _tempo;
return 0;
}
int AdLibDriver::update_nop(const uint8 *&dataptr, Channel &channel, uint8 value) {
--dataptr;
return 0;
}
int AdLibDriver::update_setDurationRandomness(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.durationRandomness = value;
return 0;
}
int AdLibDriver::update_changeChannelTempo(const uint8 *&dataptr, Channel &channel, uint8 value) {
int tempo = channel.tempo + (int8)value;
if (tempo <= 0)
tempo = 1;
else if (tempo > 255)
tempo = 255;
channel.tempo = tempo;
return 0;
}
int AdLibDriver::updateCallback46(const uint8 *&dataptr, Channel &channel, uint8 value) {
uint8 entry = *dataptr++;
_tablePtr1 = _unkTable2[entry++];
_tablePtr2 = _unkTable2[entry];
if (value == 2) {
// Frequency
writeOPL(0xA0, _tablePtr2[0]);
}
return 0;
}
int AdLibDriver::update_setupRhythmSection(const uint8 *&dataptr, Channel &channel, uint8 value) {
int channelBackUp = _curChannel;
int regOffsetBackUp = _curRegOffset;
_curChannel = 6;
_curRegOffset = _regOffset[6];
const uint8 *instrument;
instrument = getInstrument(value);
if (instrument) {
setupInstrument(_curRegOffset, instrument, channel);
} else {
debugC(3, kDebugLevelSound, "AdLibDriver::update_setupRhythmSection: Invalid instrument %d for channel 6 specified", value);
}
_unkValue6 = channel.opLevel2;
_curChannel = 7;
_curRegOffset = _regOffset[7];
instrument = getInstrument(*dataptr++);
if (instrument) {
setupInstrument(_curRegOffset, instrument, channel);
} else {
debugC(3, kDebugLevelSound, "AdLibDriver::update_setupRhythmSection: Invalid instrument %d for channel 7 specified", value);
}
_unkValue7 = channel.opLevel1;
_unkValue8 = channel.opLevel2;
_curChannel = 8;
_curRegOffset = _regOffset[8];
instrument = getInstrument(*dataptr++);
if (instrument) {
setupInstrument(_curRegOffset, instrument, channel);
} else {
debugC(3, kDebugLevelSound, "AdLibDriver::update_setupRhythmSection: Invalid instrument %d for channel 8 specified", value);
}
_unkValue9 = channel.opLevel1;
_unkValue10 = channel.opLevel2;
// Octave / F-Number / Key-On for channels 6, 7 and 8
_channels[6].regBx = *dataptr++ & 0x2F;
writeOPL(0xB6, _channels[6].regBx);
writeOPL(0xA6, *dataptr++);
_channels[7].regBx = *dataptr++ & 0x2F;
writeOPL(0xB7, _channels[7].regBx);
writeOPL(0xA7, *dataptr++);
_channels[8].regBx = *dataptr++ & 0x2F;
writeOPL(0xB8, _channels[8].regBx);
writeOPL(0xA8, *dataptr++);
_rhythmSectionBits = 0x20;
_curRegOffset = regOffsetBackUp;
_curChannel = channelBackUp;
return 0;
}
int AdLibDriver::update_playRhythmSection(const uint8 *&dataptr, Channel &channel, uint8 value) {
// Any instrument that we want to play, and which was already playing,
// is temporarily keyed off. Instruments that were off already, or
// which we don't want to play, retain their old on/off status. This is
// probably so that the instrument's envelope is played from its
// beginning again...
writeOPL(0xBD, (_rhythmSectionBits & ~(value & 0x1F)) | 0x20);
// ...but since we only set the rhythm instrument bits, and never clear
// them (until the entire rhythm section is disabled), I'm not sure how
// useful the cleverness above is. We could perhaps simply turn off all
// the rhythm instruments instead.
_rhythmSectionBits |= value;
writeOPL(0xBD, _vibratoAndAMDepthBits | 0x20 | _rhythmSectionBits);
return 0;
}
int AdLibDriver::update_removeRhythmSection(const uint8 *&dataptr, Channel &channel, uint8 value) {
--dataptr;
_rhythmSectionBits = 0;
// All the rhythm bits are cleared. The AM and Vibrato depth bits
// remain unchanged.
writeOPL(0xBD, _vibratoAndAMDepthBits);
return 0;
}
int AdLibDriver::updateCallback51(const uint8 *&dataptr, Channel &channel, uint8 value) {
uint8 value2 = *dataptr++;
if (value & 1) {
_unkValue12 = value2;
// Channel 7, op1: Level Key Scaling / Total Level
writeOPL(0x51, checkValue(value2 + _unkValue7 + _unkValue11 + _unkValue12));
}
if (value & 2) {
_unkValue14 = value2;
// Channel 8, op2: Level Key Scaling / Total Level
writeOPL(0x55, checkValue(value2 + _unkValue10 + _unkValue13 + _unkValue14));
}
if (value & 4) {
_unkValue15 = value2;
// Channel 8, op1: Level Key Scaling / Total Level
writeOPL(0x52, checkValue(value2 + _unkValue9 + _unkValue16 + _unkValue15));
}
if (value & 8) {
_unkValue18 = value2;
// Channel 7, op2: Level Key Scaling / Total Level
writeOPL(0x54, checkValue(value2 + _unkValue8 + _unkValue17 + _unkValue18));
}
if (value & 16) {
_unkValue20 = value2;
// Channel 6, op2: Level Key Scaling / Total Level
writeOPL(0x53, checkValue(value2 + _unkValue6 + _unkValue19 + _unkValue20));
}
return 0;
}
int AdLibDriver::updateCallback52(const uint8 *&dataptr, Channel &channel, uint8 value) {
uint8 value2 = *dataptr++;
if (value & 1) {
_unkValue11 = checkValue(value2 + _unkValue7 + _unkValue11 + _unkValue12);
// Channel 7, op1: Level Key Scaling / Total Level
writeOPL(0x51, _unkValue11);
}
if (value & 2) {
_unkValue13 = checkValue(value2 + _unkValue10 + _unkValue13 + _unkValue14);
// Channel 8, op2: Level Key Scaling / Total Level
writeOPL(0x55, _unkValue13);
}
if (value & 4) {
_unkValue16 = checkValue(value2 + _unkValue9 + _unkValue16 + _unkValue15);
// Channel 8, op1: Level Key Scaling / Total Level
writeOPL(0x52, _unkValue16);
}
if (value & 8) {
_unkValue17 = checkValue(value2 + _unkValue8 + _unkValue17 + _unkValue18);
// Channel 7, op2: Level Key Scaling / Total Level
writeOPL(0x54, _unkValue17);
}
if (value & 16) {
_unkValue19 = checkValue(value2 + _unkValue6 + _unkValue19 + _unkValue20);
// Channel 6, op2: Level Key Scaling / Total Level
writeOPL(0x53, _unkValue19);
}
return 0;
}
int AdLibDriver::updateCallback53(const uint8 *&dataptr, Channel &channel, uint8 value) {
uint8 value2 = *dataptr++;
if (value & 1) {
_unkValue11 = value2;
// Channel 7, op1: Level Key Scaling / Total Level
writeOPL(0x51, checkValue(value2 + _unkValue7 + _unkValue12));
}
if (value & 2) {
_unkValue13 = value2;
// Channel 8, op2: Level Key Scaling / Total Level
writeOPL(0x55, checkValue(value2 + _unkValue10 + _unkValue14));
}
if (value & 4) {
_unkValue16 = value2;
// Channel 8, op1: Level Key Scaling / Total Level
writeOPL(0x52, checkValue(value2 + _unkValue9 + _unkValue15));
}
if (value & 8) {
_unkValue17 = value2;
// Channel 7, op2: Level Key Scaling / Total Level
writeOPL(0x54, checkValue(value2 + _unkValue8 + _unkValue18));
}
if (value & 16) {
_unkValue19 = value2;
// Channel 6, op2: Level Key Scaling / Total Level
writeOPL(0x53, checkValue(value2 + _unkValue6 + _unkValue20));
}
return 0;
}
int AdLibDriver::update_setSoundTrigger(const uint8 *&dataptr, Channel &channel, uint8 value) {
_soundTrigger = value;
return 0;
}
int AdLibDriver::update_setTempoReset(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.tempoReset = value;
return 0;
}
int AdLibDriver::updateCallback56(const uint8 *&dataptr, Channel &channel, uint8 value) {
channel.unk39 = value;
channel.unk40 = *dataptr++;
return 0;
}
// static res
#define COMMAND(x) { &AdLibDriver::x, #x }
void AdLibDriver::setupParserOpcodeTable() {
static const ParserOpcode parserOpcodeTable[] = {
// 0
COMMAND(update_setRepeat),
COMMAND(update_checkRepeat),
COMMAND(update_setupProgram),
COMMAND(update_setNoteSpacing),
// 4
COMMAND(update_jump),
COMMAND(update_jumpToSubroutine),
COMMAND(update_returnFromSubroutine),
COMMAND(update_setBaseOctave),
// 8
COMMAND(update_stopChannel),
COMMAND(update_playRest),
COMMAND(update_writeAdLib),
COMMAND(update_setupNoteAndDuration),
// 12
COMMAND(update_setBaseNote),
COMMAND(update_setupSecondaryEffect1),
COMMAND(update_stopOtherChannel),
COMMAND(update_waitForEndOfProgram),
// 16
COMMAND(update_setupInstrument),
COMMAND(update_setupPrimaryEffect1),
COMMAND(update_removePrimaryEffect1),
COMMAND(update_setBaseFreq),
// 20
COMMAND(update_stopChannel),
COMMAND(update_setupPrimaryEffect2),
COMMAND(update_stopChannel),
COMMAND(update_stopChannel),
// 24
COMMAND(update_stopChannel),
COMMAND(update_stopChannel),
COMMAND(update_setPriority),
COMMAND(update_stopChannel),
// 28
COMMAND(updateCallback23),
COMMAND(updateCallback24),
COMMAND(update_setExtraLevel1),
COMMAND(update_stopChannel),
// 32
COMMAND(update_setupDuration),
COMMAND(update_playNote),
COMMAND(update_stopChannel),
COMMAND(update_stopChannel),
// 36
COMMAND(update_setFractionalNoteSpacing),
COMMAND(update_stopChannel),
COMMAND(update_setTempo),
COMMAND(update_removeSecondaryEffect1),
// 40
COMMAND(update_stopChannel),
COMMAND(update_setChannelTempo),
COMMAND(update_stopChannel),
COMMAND(update_setExtraLevel3),
// 44
COMMAND(update_setExtraLevel2),
COMMAND(update_changeExtraLevel2),
COMMAND(update_setAMDepth),
COMMAND(update_setVibratoDepth),
// 48
COMMAND(update_changeExtraLevel1),
COMMAND(update_stopChannel),
COMMAND(update_stopChannel),
COMMAND(updateCallback38),
// 52
COMMAND(update_stopChannel),
COMMAND(updateCallback39),
COMMAND(update_removePrimaryEffect2),
COMMAND(update_stopChannel),
// 56
COMMAND(update_stopChannel),
COMMAND(update_pitchBend),
COMMAND(update_resetToGlobalTempo),
COMMAND(update_nop),
// 60
COMMAND(update_setDurationRandomness),
COMMAND(update_changeChannelTempo),
COMMAND(update_stopChannel),
COMMAND(updateCallback46),
// 64
COMMAND(update_nop),
COMMAND(update_setupRhythmSection),
COMMAND(update_playRhythmSection),
COMMAND(update_removeRhythmSection),
// 68
COMMAND(updateCallback51),
COMMAND(updateCallback52),
COMMAND(updateCallback53),
COMMAND(update_setSoundTrigger),
// 72
COMMAND(update_setTempoReset),
COMMAND(updateCallback56),
COMMAND(update_stopChannel)
};
_parserOpcodeTable = parserOpcodeTable;
_parserOpcodeTableSize = ARRAYSIZE(parserOpcodeTable);
}
#undef COMMAND
// This table holds the register offset for operator 1 for each of the nine
// channels. To get the register offset for operator 2, simply add 3.
const uint8 AdLibDriver::_regOffset[] = {
0x00, 0x01, 0x02, 0x08, 0x09, 0x0A, 0x10, 0x11,
0x12
};
//These are the F-Numbers (10 bits) for the notes of the 12-tone scale.
// However, it does not match the table in the AdLib documentation I've seen.
const uint16 AdLibDriver::_freqTable[] = {
0x0134, 0x0147, 0x015A, 0x016F, 0x0184, 0x019C, 0x01B4, 0x01CE, 0x01E9,
0x0207, 0x0225, 0x0246
};
// These tables are currently only used by updateCallback46(), which only ever
// uses the first element of one of the sub-tables.
const uint8 *const AdLibDriver::_unkTable2[] = {
AdLibDriver::_unkTable2_1,
AdLibDriver::_unkTable2_2,
AdLibDriver::_unkTable2_1,
AdLibDriver::_unkTable2_2,
AdLibDriver::_unkTable2_3,
AdLibDriver::_unkTable2_2
};
const uint8 AdLibDriver::_unkTable2_1[] = {
0x50, 0x50, 0x4F, 0x4F, 0x4E, 0x4E, 0x4D, 0x4D,
0x4C, 0x4C, 0x4B, 0x4B, 0x4A, 0x4A, 0x49, 0x49,
0x48, 0x48, 0x47, 0x47, 0x46, 0x46, 0x45, 0x45,
0x44, 0x44, 0x43, 0x43, 0x42, 0x42, 0x41, 0x41,
0x40, 0x40, 0x3F, 0x3F, 0x3E, 0x3E, 0x3D, 0x3D,
0x3C, 0x3C, 0x3B, 0x3B, 0x3A, 0x3A, 0x39, 0x39,
0x38, 0x38, 0x37, 0x37, 0x36, 0x36, 0x35, 0x35,
0x34, 0x34, 0x33, 0x33, 0x32, 0x32, 0x31, 0x31,
0x30, 0x30, 0x2F, 0x2F, 0x2E, 0x2E, 0x2D, 0x2D,
0x2C, 0x2C, 0x2B, 0x2B, 0x2A, 0x2A, 0x29, 0x29,
0x28, 0x28, 0x27, 0x27, 0x26, 0x26, 0x25, 0x25,
0x24, 0x24, 0x23, 0x23, 0x22, 0x22, 0x21, 0x21,
0x20, 0x20, 0x1F, 0x1F, 0x1E, 0x1E, 0x1D, 0x1D,
0x1C, 0x1C, 0x1B, 0x1B, 0x1A, 0x1A, 0x19, 0x19,
0x18, 0x18, 0x17, 0x17, 0x16, 0x16, 0x15, 0x15,
0x14, 0x14, 0x13, 0x13, 0x12, 0x12, 0x11, 0x11,
0x10, 0x10
};
// no don't ask me WHY this table exsits!
const uint8 AdLibDriver::_unkTable2_2[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x6F,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F
};
const uint8 AdLibDriver::_unkTable2_3[] = {
0x40, 0x40, 0x40, 0x3F, 0x3F, 0x3F, 0x3E, 0x3E,
0x3E, 0x3D, 0x3D, 0x3D, 0x3C, 0x3C, 0x3C, 0x3B,
0x3B, 0x3B, 0x3A, 0x3A, 0x3A, 0x39, 0x39, 0x39,
0x38, 0x38, 0x38, 0x37, 0x37, 0x37, 0x36, 0x36,
0x36, 0x35, 0x35, 0x35, 0x34, 0x34, 0x34, 0x33,
0x33, 0x33, 0x32, 0x32, 0x32, 0x31, 0x31, 0x31,
0x30, 0x30, 0x30, 0x2F, 0x2F, 0x2F, 0x2E, 0x2E,
0x2E, 0x2D, 0x2D, 0x2D, 0x2C, 0x2C, 0x2C, 0x2B,
0x2B, 0x2B, 0x2A, 0x2A, 0x2A, 0x29, 0x29, 0x29,
0x28, 0x28, 0x28, 0x27, 0x27, 0x27, 0x26, 0x26,
0x26, 0x25, 0x25, 0x25, 0x24, 0x24, 0x24, 0x23,
0x23, 0x23, 0x22, 0x22, 0x22, 0x21, 0x21, 0x21,
0x20, 0x20, 0x20, 0x1F, 0x1F, 0x1F, 0x1E, 0x1E,
0x1E, 0x1D, 0x1D, 0x1D, 0x1C, 0x1C, 0x1C, 0x1B,
0x1B, 0x1B, 0x1A, 0x1A, 0x1A, 0x19, 0x19, 0x19,
0x18, 0x18, 0x18, 0x17, 0x17, 0x17, 0x16, 0x16,
0x16, 0x15
};
// This table is used to modify the frequency of the notes, depending on the
// note value and the pitch bend value. In theory, we could very well try to
// access memory outside this table, but in reality that probably won't happen.
//
const uint8 AdLibDriver::_pitchBendTables[][32] = {
// 0
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x08,
0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x19,
0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21 },
// 1
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x07, 0x09,
0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11,
0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x1A,
0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x22, 0x24 },
// 2
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x08, 0x09,
0x0A, 0x0C, 0x0D, 0x0E, 0x0F, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x19, 0x1A, 0x1C, 0x1D,
0x1E, 0x1F, 0x20, 0x21, 0x22, 0x24, 0x25, 0x26 },
// 3
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x08, 0x0A,
0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x1A, 0x1C, 0x1D,
0x1E, 0x1F, 0x20, 0x21, 0x23, 0x25, 0x27, 0x28 },
// 4
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x08, 0x0A,
0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x11, 0x13, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1B, 0x1D, 0x1F, 0x20,
0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x28, 0x2A },
// 5
{ 0x00, 0x01, 0x02, 0x03, 0x05, 0x07, 0x09, 0x0B,
0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x13, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1B, 0x1D, 0x1F, 0x20,
0x21, 0x22, 0x23, 0x25, 0x27, 0x29, 0x2B, 0x2D },
// 6
{ 0x00, 0x01, 0x02, 0x03, 0x05, 0x07, 0x09, 0x0B,
0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x13, 0x15,
0x16, 0x17, 0x18, 0x1A, 0x1C, 0x1E, 0x21, 0x24,
0x25, 0x26, 0x27, 0x29, 0x2B, 0x2D, 0x2F, 0x30 },
// 7
{ 0x00, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C,
0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x13, 0x15, 0x18,
0x19, 0x1A, 0x1C, 0x1D, 0x1F, 0x21, 0x23, 0x25,
0x26, 0x27, 0x29, 0x2B, 0x2D, 0x2F, 0x30, 0x32 },
// 8
{ 0x00, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0D,
0x0E, 0x0F, 0x10, 0x11, 0x12, 0x14, 0x17, 0x1A,
0x19, 0x1A, 0x1C, 0x1E, 0x20, 0x22, 0x25, 0x28,
0x29, 0x2A, 0x2B, 0x2D, 0x2F, 0x31, 0x33, 0x35 },
// 9
{ 0x00, 0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0E,
0x0F, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1B,
0x1C, 0x1D, 0x1E, 0x20, 0x22, 0x24, 0x26, 0x29,
0x2A, 0x2C, 0x2E, 0x30, 0x32, 0x34, 0x36, 0x39 },
// 10
{ 0x00, 0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0E,
0x0F, 0x10, 0x12, 0x14, 0x16, 0x19, 0x1B, 0x1E,
0x1F, 0x21, 0x23, 0x25, 0x27, 0x29, 0x2B, 0x2D,
0x2E, 0x2F, 0x31, 0x32, 0x34, 0x36, 0x39, 0x3C },
// 11
{ 0x00, 0x01, 0x03, 0x05, 0x07, 0x0A, 0x0C, 0x0F,
0x10, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1E,
0x1F, 0x20, 0x22, 0x24, 0x26, 0x28, 0x2B, 0x2E,
0x2F, 0x30, 0x32, 0x34, 0x36, 0x39, 0x3C, 0x3F },
// 12
{ 0x00, 0x02, 0x04, 0x06, 0x08, 0x0B, 0x0D, 0x10,
0x11, 0x12, 0x14, 0x16, 0x18, 0x1B, 0x1E, 0x21,
0x22, 0x23, 0x25, 0x27, 0x29, 0x2C, 0x2F, 0x32,
0x33, 0x34, 0x36, 0x38, 0x3B, 0x34, 0x41, 0x44 },
// 13
{ 0x00, 0x02, 0x04, 0x06, 0x08, 0x0B, 0x0D, 0x11,
0x12, 0x13, 0x15, 0x17, 0x1A, 0x1D, 0x20, 0x23,
0x24, 0x25, 0x27, 0x29, 0x2C, 0x2F, 0x32, 0x35,
0x36, 0x37, 0x39, 0x3B, 0x3E, 0x41, 0x44, 0x47 }
};
#pragma mark -
// Kyra 1 sound triggers. Most noticeably, these are used towards the end of
// the game, in the castle, to cycle between different songs. The same music is
// used in other places throughout the game, but the player is less likely to
// spend enough time there to notice.
const int SoundAdLibPC::_kyra1SoundTriggers[] = {
0, 4, 5, 3
};
const int SoundAdLibPC::_kyra1NumSoundTriggers = ARRAYSIZE(SoundAdLibPC::_kyra1SoundTriggers);
SoundAdLibPC::SoundAdLibPC(KyraEngine_v1 *vm, Audio::Mixer *mixer)
: Sound(vm, mixer), _driver(0), _trackEntries(), _soundDataPtr(0) {
memset(_trackEntries, 0, sizeof(_trackEntries));
_soundTriggers = 0;
_numSoundTriggers = 0;
_sfxPlayingSound = -1;
_soundFileLoaded.clear();
_currentResourceSet = 0;
memset(&_resInfo, 0, sizeof(_resInfo));
switch (vm->game()) {
case GI_LOL:
_version = _vm->gameFlags().isDemo ? 3 : 4;
break;
case GI_KYRA2:
_version = 4;
break;
case GI_KYRA1:
_version = 3;
_soundTriggers = _kyra1SoundTriggers;
_numSoundTriggers = _kyra1NumSoundTriggers;
break;
case GI_EOB2:
_version = 2;
break;
case GI_EOB1:
_version = 1;
break;
default:
break;
}
_driver = new AdLibDriver(mixer, _version);
assert(_driver);
}
SoundAdLibPC::~SoundAdLibPC() {
delete _driver;
delete[] _soundDataPtr;
for (int i = 0; i < 3; i++)
initAudioResourceInfo(i, 0);
}
bool SoundAdLibPC::init() {
_driver->initDriver();
return true;
}
void SoundAdLibPC::process() {
int trigger = _driver->getSoundTrigger();
if (trigger < _numSoundTriggers) {
int soundId = _soundTriggers[trigger];
if (soundId)
playTrack(soundId);
} else {
warning("Unknown sound trigger %d", trigger);
// TODO: At this point, we really want to clear the trigger...
}
}
void SoundAdLibPC::updateVolumeSettings() {
bool mute = false;
if (ConfMan.hasKey("mute"))
mute = ConfMan.getBool("mute");
int newMusicVolume = mute ? 0 : ConfMan.getInt("music_volume");
//newMusicVolume = (newMusicVolume * 145) / Audio::Mixer::kMaxMixerVolume + 110;
newMusicVolume = CLIP(newMusicVolume, 0, 255);
int newSfxVolume = mute ? 0 : ConfMan.getInt("sfx_volume");
//newSfxVolume = (newSfxVolume * 200) / Audio::Mixer::kMaxMixerVolume + 55;
newSfxVolume = CLIP(newSfxVolume, 0, 255);
_driver->setMusicVolume(newMusicVolume);
_driver->setSfxVolume(newSfxVolume);
}
void SoundAdLibPC::playTrack(uint8 track) {
if (_musicEnabled) {
// WORKAROUND: There is a bug in the Kyra 1 "Pool of Sorrow"
// music which causes the channels to get progressively out of
// sync for each loop. To avoid that, we declare that all four
// of the song channels have to jump "in sync".
if (track == 4 && _soundFileLoaded.equalsIgnoreCase("KYRA1B.ADL"))
_driver->setSyncJumpMask(0x000F);
else
_driver->setSyncJumpMask(0);
play(track, 0xFF);
}
}
void SoundAdLibPC::haltTrack() {
play(0, 0);
play(0, 0);
//_vm->_system->delayMillis(3 * 60);
}
bool SoundAdLibPC::isPlaying() const {
return _driver->isChannelPlaying(0);
}
void SoundAdLibPC::playSoundEffect(uint8 track, uint8 volume) {
if (_sfxEnabled)
play(track, volume);
}
void SoundAdLibPC::play(uint8 track, uint8 volume) {
uint16 soundId = 0;
if (_version == 4)
soundId = READ_LE_UINT16(&_trackEntries[track<<1]);
else
soundId = _trackEntries[track];
if ((soundId == 0xFFFF && _version == 4) || (soundId == 0xFF && _version < 4) || !_soundDataPtr)
return;
_driver->queueTrack(soundId, volume);
}
void SoundAdLibPC::beginFadeOut() {
play(_version > 2 ? 1 : 15, 0xFF);
}
int SoundAdLibPC::checkTrigger() {
return _driver->getSoundTrigger();
}
void SoundAdLibPC::resetTrigger() {
_driver->resetSoundTrigger();
}
void SoundAdLibPC::initAudioResourceInfo(int set, void *info) {
if (set >= kMusicIntro && set <= kMusicFinale) {
delete _resInfo[set];
_resInfo[set] = info ? new SoundResourceInfo_PC(*(SoundResourceInfo_PC*)info) : 0;
}
}
void SoundAdLibPC::selectAudioResourceSet(int set) {
if (set >= kMusicIntro && set <= kMusicFinale) {
if (_resInfo[set])
_currentResourceSet = set;
}
}
bool SoundAdLibPC::hasSoundFile(uint file) const {
if (file < res()->fileListSize)
return (res()->fileList[file] != 0);
return false;
}
void SoundAdLibPC::loadSoundFile(uint file) {
if (file < res()->fileListSize)
internalLoadFile(res()->fileList[file]);
}
void SoundAdLibPC::loadSoundFile(Common::String file) {
internalLoadFile(file);
}
void SoundAdLibPC::internalLoadFile(Common::String file) {
file += ((_version == 1) ? ".DAT" : ".ADL");
if (_soundFileLoaded == file)
return;
if (_soundDataPtr)
haltTrack();
uint8 *fileData = 0; uint32 fileSize = 0;
fileData = _vm->resource()->fileData(file.c_str(), &fileSize);
if (!fileData) {
warning("Couldn't find music file: '%s'", file.c_str());
return;
}
playSoundEffect(0);
playSoundEffect(0);
_driver->stopAllChannels();
_soundDataPtr = 0;
int soundDataSize = fileSize;
uint8 *p = fileData;
if (_version == 4) {
memcpy(_trackEntries, p, 500);
p += 500;
soundDataSize -= 500;
} else {
memcpy(_trackEntries, p, 120);
p += 120;
soundDataSize -= 120;
}
_soundDataPtr = new uint8[soundDataSize];
assert(_soundDataPtr);
memcpy(_soundDataPtr, p, soundDataSize);
delete[] fileData;
fileData = p = 0;
fileSize = 0;
_driver->setSoundData(_soundDataPtr, soundDataSize);
_soundFileLoaded = file;
}
} // End of namespace Kyra