scummvm/engines/kyra/sound_towns.cpp
2008-01-03 14:42:49 +00:00

1517 lines
40 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/system.h"
#include "kyra/resource.h"
#include "kyra/sound.h"
#include "kyra/screen.h"
#include "sound/audiocd.h"
#include "sound/audiostream.h"
#include "common/util.h"
#include <math.h>
#define EUPHONY_FADEOUT_TICKS 600
namespace Kyra {
enum ChannelState { _s_ready, _s_attacking, _s_decaying, _s_sustaining, _s_releasing };
class MidiChannel_EuD : public MidiChannel {
public:
MidiChannel_EuD() {}
~MidiChannel_EuD() {}
virtual void nextTick(int32 *outbuf, int buflen) = 0;
virtual void rate(uint16 r) = 0;
protected:
uint16 _rate;
};
class MidiChannel_EuD_FM : public MidiChannel_EuD {
public:
MidiChannel_EuD_FM();
virtual ~MidiChannel_EuD_FM();
void nextTick(int32 *outbuf, int buflen);
void rate(uint16 r);
// MidiChannel interface
MidiDriver *device() { return 0; }
byte getNumber() { return 0; }
void release() { }
void send(uint32 b) { }
void noteOff(byte note);
void noteOn(byte note, byte onVelo);
void programChange(byte program) {}
void pitchBend(int16 value);
void controlChange(byte control, byte value);
void pitchBendFactor(byte value) { }
void sysEx_customInstrument(uint32 unused, const byte *instr);
protected:
Voice2612 *_voice;
};
class MidiChannel_EuD_WAVE : public MidiChannel_EuD {
public:
void nextTick(int32 *outbuf, int buflen);
void rate(uint16 r);
MidiChannel_EuD_WAVE();
virtual ~MidiChannel_EuD_WAVE();
// MidiChannel interface
MidiDriver *device() { return 0; }
byte getNumber() { return 0; }
void release() { }
void send(uint32 b) { }
void noteOff(byte note);
void noteOn(byte note, byte onVelo);
void programChange(byte program) {}
void pitchBend(int16 value);
void controlChange(byte control, byte value);
void pitchBendFactor(byte value) { }
void sysEx_customInstrument(uint32 type, const byte *instr);
protected:
void velocity(int velo);
void panPosition(int8 pan);
void evpNextTick();
int _ctrl7_volume;
int16 _velocity;
int16 _note;
int32 _frequencyOffs;
float _phase;
int8 _current;
struct Voice {
char name[9];
uint16 split[8];
uint32 id[8];
struct Snd {
char name[9];
int32 id;
int32 numSamples;
int32 loopStart;
int32 loopLength;
int32 samplingRate;
int32 keyOffset;
int32 keyNote;
const int8 *_samples;
} * _snd[8];
struct Env {
ChannelState state;
int32 currentLevel;
int32 rate;
int32 tickCount;
int32 totalLevel;
int32 attackRate;
int32 decayRate;
int32 sustainLevel;
int32 sustainRate;
int32 releaseLevel;
int32 releaseRate;
int32 rootKeyOffset;
int32 size;
} * _env[8];
} * _voice;
};
class SoundTowns_EuphonyTrackQueue {
public:
SoundTowns_EuphonyTrackQueue(SoundTowns_EuphonyDriver *driver, SoundTowns_EuphonyTrackQueue *last);
~SoundTowns_EuphonyTrackQueue() {}
void release();
void initDriver();
void loadDataToCurrentPosition(uint8 * trackdata, uint32 size, bool loop = 0);
void loadDataToEndOfQueue(uint8 * trackdata, uint32 size, bool loop = 0);
void setPlayBackStatus(bool playing);
SoundTowns_EuphonyTrackQueue * reset();
bool isPlaying() {return _playing; }
uint8 * trackData() {return _trackData; }
bool _loop;
SoundTowns_EuphonyTrackQueue * _next;
private:
uint8 * _trackData;
uint8 * _used;
uint8 * _fchan;
uint8 * _wchan;
bool _playing;
SoundTowns_EuphonyDriver * _driver;
SoundTowns_EuphonyTrackQueue * _last;
};
class MidiParser_EuD : public MidiParser {
public:
MidiParser_EuD(SoundTowns_EuphonyTrackQueue * queue);
bool loadMusic (byte *data, uint32 size);
int32 calculateTempo(int16 val);
protected:
void parseNextEvent (EventInfo &info);
void resetTracking();
void setup();
byte * _enable;
byte * _mode;
byte * _channel;
byte * _adjVelo;
int8 * _adjNote;
uint8 _firstBaseTickStep;
uint8 _nextBaseTickStep;
uint32 _initialTempo;
uint32 _baseTick;
byte _tempo[3];
SoundTowns_EuphonyTrackQueue * _queue;
};
class SoundTowns_EuphonyDriver : public MidiDriver_Emulated {
public:
SoundTowns_EuphonyDriver(Audio::Mixer *mixer);
virtual ~SoundTowns_EuphonyDriver();
int open();
void close();
void send(uint32 b);
void send(byte channel, uint32 b);
uint32 property(int prop, uint32 param) { return 0; }
void setPitchBendRange(byte channel, uint range) { }
void loadFmInstruments(const byte *instr);
void loadWaveInstruments(const byte *instr);
SoundTowns_EuphonyTrackQueue * queue() { return _queue; }
MidiChannel *allocateChannel() { return 0; }
MidiChannel *getPercussionChannel() { return 0; }
void assignFmChannel(uint8 midiChannelNumber, uint8 fmChannelNumber);
void assignWaveChannel(uint8 midiChannelNumber, uint8 waveChannelNumber);
void removeChannel(uint8 midiChannelNumber);
void setVolume(int val = -1) { if (val >= 0) _volume = val; }
int getVolume(int val = -1) { return _volume; }
// AudioStream API
bool isStereo() const { return true; }
int getRate() const { return _mixer->getOutputRate(); }
void fading(bool status = true);
protected:
void nextTick(int16 *buf1, int buflen);
void rate(uint16 r);
void generateSamples(int16 *buf, int len);
MidiChannel_EuD_FM *_fChannel[6];
MidiChannel_EuD_WAVE *_wChannel[8];
MidiChannel_EuD * _channel[16];
SoundTowns_EuphonyTrackQueue * _queue;
int _volume;
bool _fading;
int16 _fadestate;
uint8 *_fmInstruments;
uint8 *_waveInstruments;
int8 * _waveSounds[10];
};
MidiChannel_EuD_FM::MidiChannel_EuD_FM() {
_voice = new Voice2612;
}
MidiChannel_EuD_FM::~MidiChannel_EuD_FM() {
delete _voice;
}
void MidiChannel_EuD_FM::noteOn(byte note, byte onVelo) {
_voice->noteOn(note, onVelo);
}
void MidiChannel_EuD_FM::noteOff(byte note) {
_voice->noteOff(note);
}
void MidiChannel_EuD_FM::controlChange(byte control, byte value) {
if (control == 121) {
// Reset controller
delete _voice;
_voice = new Voice2612;
} else if (control == 10) {
// pan position
} else {
_voice->setControlParameter(control, value);
}
}
void MidiChannel_EuD_FM::sysEx_customInstrument(uint32, const byte *fmInst) {
_voice->_rate = _rate;
_voice->setInstrument(fmInst);
}
void MidiChannel_EuD_FM::pitchBend(int16 value) {
_voice->pitchBend(value);
}
void MidiChannel_EuD_FM::nextTick(int32 *outbuf, int buflen) {
_voice->nextTick((int*) outbuf, buflen);
}
void MidiChannel_EuD_FM::rate(uint16 r) {
_rate = r;
_voice->_rate = r;
}
MidiChannel_EuD_WAVE::MidiChannel_EuD_WAVE() {
_voice = new Voice;
for (uint8 i = 0; i < 8; i++) {
_voice->_env[i] = new Voice::Env;
_voice->_snd[i] = 0;
}
_ctrl7_volume = 127;
velocity(0);
_frequencyOffs = 0x2000;
_current = -1;
}
MidiChannel_EuD_WAVE::~MidiChannel_EuD_WAVE() {
for (uint8 i = 0; i < 8; i++) {
if (_voice->_snd[i])
delete _voice->_snd[i];
delete _voice->_env[i];
}
delete _voice;
}
void MidiChannel_EuD_WAVE::noteOn(byte note, byte onVelo) {
_note = note;
velocity(onVelo);
_phase = 0;
for (_current = 0; _current < 7; _current++) {
if (note <= _voice->split[_current])
break;
}
_voice->_env[_current]->state = _s_attacking;
_voice->_env[_current]->currentLevel = 0;
_voice->_env[_current]->rate = _rate;
_voice->_env[_current]->tickCount = 0;
}
void MidiChannel_EuD_WAVE::noteOff(byte note) {
if (_current == -1)
return;
if (_voice->_env[_current]->state == _s_ready)
return;
_voice->_env[_current]->state = _s_releasing;
_voice->_env[_current]->releaseLevel = _voice->_env[_current]->currentLevel;
_voice->_env[_current]->tickCount = 0;
}
void MidiChannel_EuD_WAVE::controlChange(byte control, byte value) {
switch (control) {
case 0x07:
// volume
_ctrl7_volume = value;
break;
case 0x0A:
// pan position
break;
case 0x79:
// Reset controller
for (uint8 i = 0; i < 8; i++) {
if (_voice->_snd[i])
delete _voice->_snd[i];
delete _voice->_env[i];
}
delete _voice;
_voice = new Voice;
for (uint8 i = 0; i < 8; i++) {
_voice->_env[i] = new Voice::Env;
_voice->_snd[i] = 0;
}
break;
case 0x7B:
noteOff(_note);
break;
default:
break;
}
}
void MidiChannel_EuD_WAVE::sysEx_customInstrument(uint32 type, const byte *fmInst) {
if (type == 0x80) {
for (uint8 i = 0; i < 8; i++) {
const byte * const* pos = (const byte * const*) fmInst;
for (uint8 ii = 0; ii < 10; ii++) {
if (_voice->id[i] == *(pos[ii] + 8)) {
if (!_voice->_snd[i])
_voice->_snd[i] = new Voice::Snd;
memset (_voice->_snd[i]->name, 0, 9);
memcpy (_voice->_snd[i]->name, (const char*) pos[ii], 8);
_voice->_snd[i]->id = READ_LE_UINT32(pos[ii] + 8);
_voice->_snd[i]->numSamples = READ_LE_UINT32(pos[ii] + 12);
_voice->_snd[i]->loopStart = READ_LE_UINT32(pos[ii] + 16);
_voice->_snd[i]->loopLength = READ_LE_UINT32(pos[ii] + 20);
_voice->_snd[i]->samplingRate = READ_LE_UINT16(pos[ii] + 24);
_voice->_snd[i]->keyOffset = READ_LE_UINT16(pos[ii] + 26);
_voice->_snd[i]->keyNote = *(const uint8*)(pos[ii] + 28);
_voice->_snd[i]->_samples = (const int8*)(pos[ii] + 32);
}
}
}
} else {
memset (_voice->name, 0, 9);
memcpy (_voice->name, (const char*) fmInst, 8);
for (uint8 i = 0; i < 8; i++) {
_voice->split[i] = READ_LE_UINT16(fmInst + 16 + 2 * i);
_voice->id[i] = READ_LE_UINT32(fmInst + 32 + 4 * i);
_voice->_snd[i] = 0;
_voice->_env[i]->state = _s_ready;
_voice->_env[i]->currentLevel = 0;
_voice->_env[i]->totalLevel = *(fmInst + 64 + 8 * i);
_voice->_env[i]->attackRate = *(fmInst + 65 + 8 * i) * 10;
_voice->_env[i]->decayRate = *(fmInst + 66 + 8 * i) * 10;
_voice->_env[i]->sustainLevel = *(fmInst + 67 + 8 * i);
_voice->_env[i]->sustainRate = *(fmInst + 68 + 8 * i) * 20;
_voice->_env[i]->releaseRate = *(fmInst + 69 + 8 * i) * 10;
_voice->_env[i]->rootKeyOffset = *(fmInst + 70 + 8 * i);
}
}
}
void MidiChannel_EuD_WAVE::pitchBend(int16 value) {
_frequencyOffs = value;
}
void MidiChannel_EuD_WAVE::nextTick(int32 *outbuf, int buflen) {
if (_current == -1 || !_voice->_snd[_current] || !_voice->_env[_current]->state || !_velocity) {
velocity(0);
_current = -1;
return;
}
float phaseStep = SoundTowns::semitoneAndSampleRate_to_sampleStep(_note, _voice->_snd[_current]->keyNote -
_voice->_env[_current]->rootKeyOffset, _voice->_snd[_current]->samplingRate, _rate, _frequencyOffs);
int32 looplength = _voice->_snd[_current]->loopLength;
int32 numsamples = _voice->_snd[_current]->numSamples;
const int8 * samples = _voice->_snd[_current]->_samples;
for (int i = 0; i < buflen; i++) {
if (looplength > 0) {
while (_phase >= numsamples)
_phase -= looplength;
} else {
if (_phase >= numsamples) {
velocity(0);
_current = -1;
break;
}
}
int32 output;
int32 phase0 = int32(_phase);
int32 phase1 = int32(_phase + 1);
if (phase1 >= numsamples)
phase1 -= looplength;
float weight0 = _phase - phase0;
float weight1 = phase1 - _phase;
output = int32(samples[phase0] * weight0 + samples[phase1] * weight1);
output *= _velocity;
output <<= 1;
evpNextTick();
output *= _voice->_env[_current]->currentLevel;
output >>= 7;
output *= _ctrl7_volume;
output >>= 7;
output *= 185;
output >>= 8;
outbuf[i] += output;
_phase += phaseStep;
}
}
void MidiChannel_EuD_WAVE::evpNextTick() {
switch (_voice->_env[_current]->state) {
case _s_ready:
_voice->_env[_current]->currentLevel = 0;
return;
case _s_attacking:
if (_voice->_env[_current]->attackRate == 0)
_voice->_env[_current]->currentLevel = _voice->_env[_current]->totalLevel;
else if (_voice->_env[_current]->attackRate >= 1270)
_voice->_env[_current]->currentLevel = 0;
else
_voice->_env[_current]->currentLevel = (_voice->_env[_current]->totalLevel *
_voice->_env[_current]->tickCount++ * 1000) /
(_voice->_env[_current]->attackRate * _voice->_env[_current]->rate);
if (_voice->_env[_current]->currentLevel >= _voice->_env[_current]->totalLevel) {
_voice->_env[_current]->currentLevel = _voice->_env[_current]->totalLevel;
_voice->_env[_current]->state = _s_decaying;
_voice->_env[_current]->tickCount = 0;
}
break;
case _s_decaying:
if (_voice->_env[_current]->decayRate == 0)
_voice->_env[_current]->currentLevel = _voice->_env[_current]->sustainLevel;
else if (_voice->_env[_current]->decayRate >= 1270)
_voice->_env[_current]->currentLevel = _voice->_env[_current]->totalLevel;
else {
_voice->_env[_current]->currentLevel = _voice->_env[_current]->totalLevel;
_voice->_env[_current]->currentLevel -= ((_voice->_env[_current]->totalLevel -
_voice->_env[_current]->sustainLevel) * _voice->_env[_current]->tickCount++ * 1000) /
(_voice->_env[_current]->decayRate * _voice->_env[_current]->rate);
}
if (_voice->_env[_current]->currentLevel <= _voice->_env[_current]->sustainLevel) {
_voice->_env[_current]->currentLevel = _voice->_env[_current]->sustainLevel;
_voice->_env[_current]->state = _s_sustaining;
_voice->_env[_current]->tickCount = 0;
}
break;
case _s_sustaining:
if (_voice->_env[_current]->sustainRate == 0)
_voice->_env[_current]->currentLevel = 0;
else if (_voice->_env[_current]->sustainRate >= 2540)
_voice->_env[_current]->currentLevel = _voice->_env[_current]->sustainLevel;
else {
_voice->_env[_current]->currentLevel = _voice->_env[_current]->sustainLevel;
_voice->_env[_current]->currentLevel -= (_voice->_env[_current]->sustainLevel *
_voice->_env[_current]->tickCount++ * 1000) / (_voice->_env[_current]->sustainRate *
_voice->_env[_current]->rate);
}
if (_voice->_env[_current]->currentLevel <= 0) {
_voice->_env[_current]->currentLevel = 0;
_voice->_env[_current]->state = _s_ready;
_voice->_env[_current]->tickCount = 0;
}
break;
case _s_releasing:
if (_voice->_env[_current]->releaseRate == 0)
_voice->_env[_current]->currentLevel = 0;
else if (_voice->_env[_current]->releaseRate >= 1270)
_voice->_env[_current]->currentLevel = _voice->_env[_current]->releaseLevel;
else {
_voice->_env[_current]->currentLevel = _voice->_env[_current]->releaseLevel;
_voice->_env[_current]->currentLevel -= (_voice->_env[_current]->releaseLevel *
_voice->_env[_current]->tickCount++ * 1000) / (_voice->_env[_current]->releaseRate *
_voice->_env[_current]->rate);
}
if (_voice->_env[_current]->currentLevel <= 0) {
_voice->_env[_current]->currentLevel = 0;
_voice->_env[_current]->state = _s_ready;
}
break;
default:
break;
}
}
void MidiChannel_EuD_WAVE::rate(uint16 r) {
_rate = r;
}
void MidiChannel_EuD_WAVE::velocity(int velo) {
_velocity = velo;
}
SoundTowns_EuphonyDriver::SoundTowns_EuphonyDriver(Audio::Mixer *mixer)
: MidiDriver_Emulated(mixer) {
_volume = 255;
_fadestate = EUPHONY_FADEOUT_TICKS;
_queue = 0;
MidiDriver_YM2612::createLookupTables();
for (uint8 i = 0; i < 6; i++)
_channel[i] = _fChannel[i] = new MidiChannel_EuD_FM;
for (uint8 i = 0; i < 8; i++)
_channel[i + 6] = _wChannel[i] = new MidiChannel_EuD_WAVE;
_channel[14] = _channel[15] = 0;
_fmInstruments = _waveInstruments = 0;
memset(_waveSounds, 0, sizeof(uint8*) * 10);
rate(getRate());
fading(0);
_queue = new SoundTowns_EuphonyTrackQueue(this, 0);
}
SoundTowns_EuphonyDriver::~SoundTowns_EuphonyDriver() {
for (int i = 0; i < 6; i++)
delete _fChannel[i];
for (int i = 0; i < 8; i++)
delete _wChannel[i];
MidiDriver_YM2612::removeLookupTables();
if (_fmInstruments) {
delete [] _fmInstruments;
_fmInstruments = 0;
}
if (_waveInstruments) {
delete [] _waveInstruments;
_waveInstruments = 0;
}
for (int i = 0; i < 10; i++) {
if (_waveSounds[i]) {
delete [] _waveSounds[i];
_waveSounds[i] = 0;
}
}
if (_queue) {
_queue->release();
delete _queue;
_queue = 0;
}
}
int SoundTowns_EuphonyDriver::open() {
if (_isOpen)
return MERR_ALREADY_OPEN;
MidiDriver_Emulated::open();
_mixer->playInputStream(Audio::Mixer::kMusicSoundType, &_mixerSoundHandle,
this, -1, Audio::Mixer::kMaxChannelVolume, 0, false, true);
return 0;
}
void SoundTowns_EuphonyDriver::close() {
if (!_isOpen)
return;
_isOpen = false;
_mixer->stopHandle(_mixerSoundHandle);
}
void SoundTowns_EuphonyDriver::send(uint32 b) {
send(b & 0xF, b & 0xFFFFFFF0);
}
void SoundTowns_EuphonyDriver::send(byte chan, uint32 b) {
byte param2 = (byte) ((b >> 16) & 0xFF);
byte param1 = (byte) ((b >> 8) & 0xFF);
byte cmd = (byte) (b & 0xF0);
if (chan > ARRAYSIZE(_channel))
return;
switch (cmd) {
case 0x80:// Note Off
if (_channel[chan])
_channel[chan]->noteOff(param1);
break;
case 0x90: // Note On
if (_channel[chan])
_channel[chan]->noteOn(param1, param2);
break;
case 0xA0: // Aftertouch
break; // Not supported.
case 0xB0: // Control Change
if (param1 == 0x79) {
fading(0);
for (int i = 0; i < 15; i++) {
if (_channel[i]) {
_channel[i]->controlChange(param1, param2);
_channel[i]->programChange(0);
}
}
} else if (param1 == 0x7B) {
for (int i = 0; i < 15; i++) {
if (_channel[i])
_channel[i]->controlChange(param1, param2);
}
} else {
if (_channel[chan])
_channel[chan]->controlChange(param1, param2);
}
break;
case 0xC0: // Program Change
for (int i = 0; i < 6; i++) {
if (_channel[chan] == _fChannel[i]) {
_channel[chan]->sysEx_customInstrument(0, _fmInstruments + param1 * 0x30);
break;
}
}
for (int i = 0; i < 8; i++) {
if (_channel[chan] == _wChannel[i]) {
_channel[chan]->sysEx_customInstrument(0, _waveInstruments + param1 * 0x80);
_channel[chan]->sysEx_customInstrument(0x80, (const byte*) _waveSounds);
break;
}
}
break;
case 0xD0: // Channel Pressure
break; // Not supported.
case 0xE0: // Pitch Bend
if (_channel[chan])
_channel[chan]->pitchBend((param1 | (param2 << 7)) - 0x2000);
break;
default:
warning("SoundTowns_EuphonyDriver: Unknown send() command 0x%02X", cmd);
}
}
void SoundTowns_EuphonyDriver::loadFmInstruments(const byte *instr) {
if (_fmInstruments)
delete [] _fmInstruments;
_fmInstruments = new uint8[0x1800];
memcpy(_fmInstruments, instr, 0x1800);
}
void SoundTowns_EuphonyDriver::loadWaveInstruments(const byte *instr) {
if (_waveInstruments)
delete [] _waveInstruments;
_waveInstruments = new uint8[0x1000];
memcpy(_waveInstruments, instr, 0x1000);
const uint8 *pos = (const uint8 *)(instr + 0x1000);
for (uint8 i = 0; i < 10; i++) {
if (_waveSounds[i])
delete [] _waveSounds[i];
uint32 numsamples = READ_LE_UINT32(pos + 0x0C);
_waveSounds[i] = new int8[numsamples + 0x20];
memcpy(_waveSounds[i], pos, 0x20);
pos += 0x20;
for (uint32 ii = 0; ii < numsamples; ii++) {
uint8 s = *(pos + ii);
s = (s < 0x80) ? 0x80 - s : s;
_waveSounds[i][ii + 0x20] = s ^ 0x80;
}
pos += numsamples;
}
}
void SoundTowns_EuphonyDriver::assignFmChannel(uint8 midiChannelNumber, uint8 fmChannelNumber) {
_channel[midiChannelNumber] = _fChannel[fmChannelNumber];
}
void SoundTowns_EuphonyDriver::assignWaveChannel(uint8 midiChannelNumber, uint8 waveChannelNumber) {
_channel[midiChannelNumber] = _wChannel[waveChannelNumber];
}
void SoundTowns_EuphonyDriver::removeChannel(uint8 midiChannelNumber) {
_channel[midiChannelNumber] = 0;
}
void SoundTowns_EuphonyDriver::generateSamples(int16 *data, int len) {
memset(data, 0, 2 * sizeof(int16) * len);
nextTick(data, len);
}
void SoundTowns_EuphonyDriver::nextTick(int16 *buf1, int buflen) {
int32 *buf0 = (int32 *)buf1;
for (int i = 0; i < ARRAYSIZE(_channel); i++) {
if (_channel[i])
_channel[i]->nextTick(buf0, buflen);
}
for (int i = 0; i < buflen; ++i) {
int s = int( float(buf0[i] * _volume) * float((float)_fadestate / EUPHONY_FADEOUT_TICKS) );
buf1[i*2] = buf1[i*2+1] = (s >> 9) & 0xffff;
}
if (_fading) {
if (_fadestate) {
_fadestate--;
} else {
_fading = false;
_queue->setPlayBackStatus(false);
}
}
}
void SoundTowns_EuphonyDriver::rate(uint16 r) {
for (uint8 i = 0; i < 16; i++) {
if (_channel[i])
_channel[i]->rate(r);
}
}
void SoundTowns_EuphonyDriver::fading(bool status) {
_fading = status;
if (!_fading)
_fadestate = EUPHONY_FADEOUT_TICKS;
}
MidiParser_EuD::MidiParser_EuD(SoundTowns_EuphonyTrackQueue * queue) : MidiParser(),
_firstBaseTickStep(0x33), _nextBaseTickStep(0x33) {
_initialTempo = calculateTempo(0x5a);
_queue = queue;
}
void MidiParser_EuD::parseNextEvent(EventInfo &info) {
byte *pos = _position._play_pos;
if (_queue->_next) {
if (info.ext.type == 0x2F) {
unloadMusic();
memset(&info, 0, sizeof(EventInfo));
pos = _position._play_pos = _tracks[0] = _queue->trackData() + 0x806;
} else if (_active_track == 255) {
_queue = _queue->_next;
setup();
setTrack(0);
_queue->setPlayBackStatus(true);
return;
} else if (!_queue->isPlaying()) {
unloadMusic();
_queue = _queue->_next;
setup();
setTrack(0);
_queue->setPlayBackStatus(true);
return;
}
}
while (true) {
byte cmd = *pos;
byte evt = (cmd & 0xF0);
if (evt == 0x90) {
byte chan = pos[1];
if (_enable[chan]) {
uint16 tick = (pos[2] | ((uint16) pos[3] << 7)) + _baseTick;
info.start = pos + 6;
uint32 last = _position._last_event_tick;
info.delta = (tick < last) ? 0 : (tick - last);
info.event = 0x90 | _channel[chan];
info.length = pos[7] | (pos[8] << 4) | (pos[9] << 8) | (pos[10] << 12);
int8 note = (int8) pos[4];
if (_adjNote[chan]) {
note = (note & 0x7f) & _adjNote[chan];
if (note > 0x7c)
note -= 0x0c;
else if (note < 0)
note += 0x0c;
}
info.basic.param1 = (byte) note;
uint8 onVelo = (pos[5] & 0x7f) + _adjVelo[chan];
if (onVelo > 0x7f)
onVelo = 0x7f;
if (onVelo < 1)
onVelo = 1;
info.basic.param2 = onVelo;
pos += 12;
break;
} else {
pos += 6;
}
} else if (evt == 0xB0 || evt == 0xC0 || evt == 0xe0) {
byte chan = pos[1];
if (_enable[chan]) {
info.start = pos;
uint16 tick = (pos[2] | ((uint16) pos[3] << 7)) + _baseTick;
uint32 last = _position._last_event_tick;
info.delta = (tick < last) ? 0 : (tick - last);
info.event = evt | _channel[chan];
info.length = 0;
info.basic.param1 = pos[4];
info.basic.param2 = pos[5];
pos += 6;
break;
} else {
pos += 6;
}
} else if (cmd == 0xF2) {
static uint16 tickTable [] = { 0x180, 0xC0, 0x80, 0x60, 0x40, 0x30, 0x20, 0x18 };
_baseTick += tickTable[_nextBaseTickStep >> 4] * ((_nextBaseTickStep & 0x0f) + 1);
_nextBaseTickStep = pos[1];
pos += 6;
} else if (cmd == 0xF8) {
int32 tempo = calculateTempo(pos[4] | (pos[5] << 7));
info.event = 0xff;
info.length = 3;
info.ext.type = 0x51;
_tempo[0] = (tempo >> 16) & 0xff;
_tempo[1] = (tempo >> 8) & 0xff;
_tempo[2] = tempo & 0xff;
info.ext.data = (byte*) _tempo;
pos += 6;
break;
} else if (cmd == 0xFD || cmd == 0xFE) {
// End of track.
if (_autoLoop) {
unloadMusic();
_queue->setPlayBackStatus(true);
pos = info.start = _tracks[0];
} else {
info.start = pos;
}
uint32 last = _position._last_event_tick;
uint16 tick = (pos[2] | ((uint16) pos[3] << 7)) + _baseTick;
info.delta = (tick < last) ? 0 : (tick - last);
info.event = 0xFF;
info.ext.type = 0x2F;
info.ext.data = pos;
break;
} else {
error("Unknown Euphony music event 0x%02X", (int)cmd);
memset(&info, 0, sizeof(info));
pos = 0;
break;
}
}
_position._play_pos = pos;
}
bool MidiParser_EuD::loadMusic(byte *data, uint32 size) {
bool loop = _autoLoop;
if (_queue->isPlaying() && !_queue->_loop) {
_queue->loadDataToEndOfQueue(data, size, loop);
} else {
unloadMusic();
_queue = _queue->reset();
_queue->release();
_queue->loadDataToCurrentPosition(data, size, loop);
setup();
setTrack(0);
_queue->setPlayBackStatus(true);
}
return true;
}
int32 MidiParser_EuD::calculateTempo(int16 val) {
int32 tempo = val;
if (tempo < 0)
tempo = 0;
if (tempo > 0x1F4)
tempo = 0x1F4;
tempo = 0x4C4B4 / (tempo + 0x1E);
while (tempo < 0x451)
tempo <<= 1;
tempo <<= 8;
return tempo;
}
void MidiParser_EuD::resetTracking() {
MidiParser::resetTracking();
_nextBaseTickStep = _firstBaseTickStep;
_baseTick = 0;
setTempo(_initialTempo);
_queue->setPlayBackStatus(false);
}
void MidiParser_EuD::setup() {
uint8 *data = _queue->trackData();
if (!data)
return;
_queue->initDriver();
_enable = data + 0x354;
_mode = data + 0x374;
_channel = data + 0x394;
_adjVelo = data + 0x3B4;
_adjNote = (int8*) data + 0x3D4;
_nextBaseTickStep = _firstBaseTickStep = data[0x804];
_initialTempo = calculateTempo((data[0x805] > 0xfc) ? 0x5a : data[0x805]);
property(MidiParser::mpAutoLoop, _queue->_loop);
_num_tracks = 1;
_ppqn = 120;
_tracks[0] = data + 0x806;
}
SoundTowns_EuphonyTrackQueue::SoundTowns_EuphonyTrackQueue(SoundTowns_EuphonyDriver * driver, SoundTowns_EuphonyTrackQueue * last) {
_trackData = 0;
_next = 0;
_driver = driver;
_last = last;
_used = _fchan = _wchan = 0;
_playing = false;
}
void SoundTowns_EuphonyTrackQueue::setPlayBackStatus(bool playing) {
SoundTowns_EuphonyTrackQueue * i = this;
do {
i->_playing = playing;
i = i->_next;
} while (i);
}
SoundTowns_EuphonyTrackQueue * SoundTowns_EuphonyTrackQueue::reset() {
SoundTowns_EuphonyTrackQueue * i = this;
while (i->_last)
i = i->_last;
return i;
}
void SoundTowns_EuphonyTrackQueue::loadDataToCurrentPosition(uint8 * trackdata, uint32 size, bool loop) {
if (_trackData)
delete [] _trackData;
_trackData = new uint8[0xC58A];
memset(_trackData, 0, 0xC58A);
Screen::decodeFrame4(trackdata, _trackData, size);
_used = _trackData + 0x374;
_fchan = _trackData + 0x6d4;
_wchan = _trackData + 0x6dA;
_loop = loop;
_playing = false;
}
void SoundTowns_EuphonyTrackQueue::loadDataToEndOfQueue(uint8 * trackdata, uint32 size, bool loop) {
if (!_trackData) {
loadDataToCurrentPosition(trackdata, size, loop);
return;
}
SoundTowns_EuphonyTrackQueue * i = this;
while (i->_next)
i = i->_next;
i = i->_next = new SoundTowns_EuphonyTrackQueue(_driver, i);
i->_trackData = new uint8[0xC58A];
memset(i->_trackData, 0, 0xC58A);
Screen::decodeFrame4(trackdata, i->_trackData, size);
i->_used = i->_trackData + 0x374;
i->_fchan = i->_trackData + 0x6d4;
i->_wchan = i->_trackData + 0x6dA;
i->_loop = loop;
i->_playing = _playing;
}
void SoundTowns_EuphonyTrackQueue::release() {
SoundTowns_EuphonyTrackQueue * i = _next;
_next = 0;
_playing = false;
_used = _fchan = _wchan = 0;
if (_trackData) {
delete [] _trackData;
_trackData = 0;
}
while (i) {
if (i->_trackData) {
delete [] i->_trackData;
i->_trackData = 0;
}
i = i->_next;
if (i)
delete i->_last;
}
}
void SoundTowns_EuphonyTrackQueue::initDriver() {
for (uint8 i = 0; i < 6; i++) {
if (_used[_fchan[i]])
_driver->assignFmChannel(_fchan[i], i);
}
for (uint8 i = 0; i < 8; i++) {
if (_used[_wchan[i]])
_driver->assignWaveChannel(_wchan[i], i);
}
for (uint8 i = 0; i < 16; i++) {
if (!_used[i])
_driver->removeChannel(i);
}
_driver->send(0x79B0);
}
SoundTowns::SoundTowns(KyraEngine *vm, Audio::Mixer *mixer)
: Sound(vm, mixer), _lastTrack(-1), _currentSFX(0), _sfxFileData(0),
_sfxFileIndex((uint)-1), _sfxWDTable(0), _parser(0) {
_driver = new SoundTowns_EuphonyDriver(_mixer);
int ret = open();
if (ret != MERR_ALREADY_OPEN && ret != 0)
error("couldn't open midi driver");
}
SoundTowns::~SoundTowns() {
AudioCD.stop();
haltTrack();
delete [] _sfxFileData;
Common::StackLock lock(_mutex);
_driver->setTimerCallback(0, 0);
close();
_driver = 0;
}
bool SoundTowns::init() {
_vm->checkCD();
int unused = 0;
_sfxWDTable = _vm->staticres()->loadRawData(kKyra1TownsSFXTable, unused);
return loadInstruments();
}
void SoundTowns::process() {
AudioCD.updateCD();
}
void SoundTowns::playTrack(uint8 track) {
if (track < 2)
return;
track -= 2;
const int32 * const tTable = (const int32 * const) cdaData();
int tTableIndex = 3 * track;
int trackNum = tTable[tTableIndex + 2];
int32 loop = tTable[tTableIndex + 1];
if (track == _lastTrack && _musicEnabled)
return;
beginFadeOut();
if (_musicEnabled == 2 && trackNum != -1) {
AudioCD.play(trackNum+1, loop ? -1 : 1, 0, 0);
AudioCD.updateCD();
} else if (_musicEnabled) {
playEuphonyTrack((uint32) tTable[tTableIndex], loop);
}
_lastTrack = track;
}
void SoundTowns::haltTrack() {
_lastTrack = -1;
AudioCD.stop();
AudioCD.updateCD();
if (_parser) {
Common::StackLock lock(_mutex);
_parser->setTrack(0);
_parser->jumpToTick(0);
_parser->unloadMusic();
delete _parser;
_parser = 0;
setVolume(255);
}
_driver->queue()->release();
}
void SoundTowns::loadSoundFile(uint file) {
if (_sfxFileIndex == file)
return;
_sfxFileIndex = file;
delete [] _sfxFileData;
_sfxFileData = _vm->resource()->fileData(fileListEntry(file), 0);
}
void SoundTowns::playSoundEffect(uint8 track) {
if (!_sfxEnabled || !_sfxFileData)
return;
if (track == 0 || track == 10) {
_mixer->stopHandle(_sfxHandle);
return;
} else if (track == 1) {
// sfx fadeout
_mixer->stopHandle(_sfxHandle);
return;
}
uint8 note = 0x3c;
if (_sfxFileIndex == 5) {
if (track == 0x10) {
note = 0x3e;
track = 0x0f;
} else if (track == 0x11) {
note = 0x40;
track = 0x0f;
} else if (track == 0x12) {
note = 0x41;
track = 0x0f;
}
}
uint8 * fileBody = _sfxFileData + 0x01b8;
int32 offset = (int32)READ_LE_UINT32(_sfxFileData + (track - 0x0b) * 4);
if (offset == -1)
return;
uint32 * sfxHeader = (uint32*)(fileBody + offset);
uint32 sfxHeaderID = READ_LE_UINT32(sfxHeader);
uint32 sfxHeaderInBufferSize = READ_LE_UINT32(&sfxHeader[1]);
uint32 sfxHeaderOutBufferSize = READ_LE_UINT32(&sfxHeader[3]);
uint32 sfxRootNoteOffs = READ_LE_UINT32(&sfxHeader[7]);
uint32 sfxRate = READ_LE_UINT32(&sfxHeader[6]);
uint32 playbackBufferSize = (sfxHeaderID == 1) ? sfxHeaderInBufferSize : sfxHeaderOutBufferSize;
uint8 *sfxPlaybackBuffer = (uint8 *)malloc(playbackBufferSize);
memset(sfxPlaybackBuffer, 0x80, playbackBufferSize);
uint8 *sfxBody = ((uint8 *)sfxHeader) + 0x20;
if (!sfxHeaderID) {
memcpy(sfxPlaybackBuffer, sfxBody, playbackBufferSize);
} else if (sfxHeaderID == 1) {
Screen::decodeFrame4(sfxBody, sfxPlaybackBuffer, playbackBufferSize);
} else if (_sfxWDTable) {
uint8 * tgt = sfxPlaybackBuffer;
uint32 sfx_BtTable_Offset = 0;
uint32 sfx_WdTable_Offset = 0;
uint32 sfx_WdTable_Number = 5;
for (uint32 i = 0; i < sfxHeaderInBufferSize; i++) {
sfx_WdTable_Offset = (sfx_WdTable_Number * 3 << 9) + sfxBody[i] * 6;
sfx_WdTable_Number = READ_LE_UINT16(_sfxWDTable + sfx_WdTable_Offset);
sfx_BtTable_Offset += (int16)READ_LE_UINT16(_sfxWDTable + sfx_WdTable_Offset + 2);
*tgt++ = _sfxBTTable[((sfx_BtTable_Offset >> 2) & 0xff)];
sfx_BtTable_Offset += (int16)READ_LE_UINT16(_sfxWDTable + sfx_WdTable_Offset + 4);
*tgt++ = _sfxBTTable[((sfx_BtTable_Offset >> 2) & 0xff)];
}
}
for (uint32 i = 0; i < playbackBufferSize; i++) {
if (sfxPlaybackBuffer[i] < 0x80)
sfxPlaybackBuffer[i] = 0x80 - sfxPlaybackBuffer[i];
}
playbackBufferSize -= 0x20;
uint32 outputRate = uint32(11025 * semitoneAndSampleRate_to_sampleStep(note, sfxRootNoteOffs, sfxRate, 11025, 0x2000));
_currentSFX = Audio::makeLinearInputStream(sfxPlaybackBuffer, playbackBufferSize,
outputRate, Audio::Mixer::FLAG_UNSIGNED | Audio::Mixer::FLAG_LITTLE_ENDIAN | Audio::Mixer::FLAG_AUTOFREE, 0, 0);
_mixer->playInputStream(Audio::Mixer::kSFXSoundType, &_sfxHandle, _currentSFX);
}
void SoundTowns::beginFadeOut() {
_lastTrack = -1;
_driver->fading();
// TODO: this should fade out too
AudioCD.stop();
AudioCD.updateCD();
}
int SoundTowns::open() {
if (!_driver)
return 255;
int ret = _driver->open();
if (ret)
return ret;
_driver->setTimerCallback(this, &onTimer);
return 0;
}
void SoundTowns::close() {
if (_driver)
_driver->close();
}
void SoundTowns::send(uint32 b) {
_driver->send(b);
}
uint32 SoundTowns::getBaseTempo(void) {
return _driver ? _driver->getBaseTempo() : 0;
}
bool SoundTowns::loadInstruments() {
uint8 * twm = _vm->resource()->fileData("twmusic.pak", 0);
if (!twm)
return false;
_driver->queue()->loadDataToCurrentPosition(twm, 0x8BF0);
_driver->loadFmInstruments(_driver->queue()->trackData() + 8);
_driver->queue()->loadDataToCurrentPosition(twm + 0x0CA0, 0xC58A);
_driver->loadWaveInstruments(_driver->queue()->trackData() + 8);
delete [] twm;
_driver->queue()->release();
return true;
}
void SoundTowns::playEuphonyTrack(uint32 offset, int loop) {
uint8 * twm = _vm->resource()->fileData("twmusic.pak", 0);
if (!_parser) {
_parser = new MidiParser_EuD(_driver->queue());
_parser->setMidiDriver(this);
_parser->setTimerRate(getBaseTempo());
}
_parser->property(MidiParser::mpAutoLoop, loop);
_parser->loadMusic(twm + 0x4b70 + offset, 0xC58A);
delete [] twm;
}
void SoundTowns::onTimer(void * data) {
SoundTowns *music = (SoundTowns *)data;
Common::StackLock lock(music->_mutex);
if (music->_parser)
music->_parser->onTimer();
}
float SoundTowns::semitoneAndSampleRate_to_sampleStep(int8 semiTone, int8 semiToneRootkey,
uint32 sampleRate, uint32 outputRate, int32 pitchWheel) {
if (semiTone < 0)
semiTone = 0;
if (semiTone > 119)
semiTone = 119;
if (semiTone < 0)
semiTone = 0;
if (semiTone > 119)
semiTone = 119;
static const float noteFrq[] = {
0004.13f, 0004.40f, 0004.64f, 0004.95f, 0005.16f, 0005.50f, 0005.80f, 0006.19f, 0006.60f, 0006.86f,
0007.43f, 0007.73f, 0008.25f, 0008.80f, 0009.28f, 0009.90f, 0010.31f, 0011.00f, 0011.60f, 0012.38f,
0013.20f, 0013.75f, 0014.85f, 0015.47f, 0016.50f, 0017.60f, 0018.56f, 0019.80f, 0020.63f, 0022.00f,
0023.21f, 0024.75f, 0026.40f, 0027.50f, 0029.70f, 0030.94f, 0033.00f, 0035.20f, 0037.16f, 0039.60f,
0041.25f, 0044.00f, 0046.41f, 0049.50f, 0052.80f, 0055.00f, 0059.40f, 0061.88f, 0066.00f, 0070.40f,
0074.25f, 0079.20f, 0082.50f, 0088.00f, 0092.83f, 0099.00f, 0105.60f, 0110.00f, 0118.80f, 0123.75f,
0132.00f, 0140.80f, 0148.50f, 0158.40f, 0165.00f, 0176.00f, 0185.65f, 0198.00f, 0211.20f, 0220.00f,
0237.60f, 0247.50f, 0264.00f, 0281.60f, 0297.00f, 0316.80f, 0330.00f, 0352.00f, 0371.30f, 0396.00f,
0422.40f, 0440.00f, 0475.20f, 0495.00f, 0528.00f, 0563.20f, 0594.00f, 0633.60f, 0660.00f, 0704.00f,
0742.60f, 0792.00f, 0844.80f, 0880.00f, 0950.40f, 0990.00f, 1056.00f, 1126.40f, 1188.00f, 1267.20f,
1320.00f, 1408.00f, 1485.20f, 1584.00f, 1689.60f, 1760.00f, 1900.80f, 1980.00f, 2112.00f, 2252.80f,
2376.00f, 2534.40f, 2640.00f, 2816.00f, 2970.40f, 3168.00f, 3379.20f, 3520.00f, 3801.60f, 3960.00f
};
float pwModifier = (pitchWheel - 0x2000) / 0x2000;
int8 d = pwModifier ? (pwModifier < 0 ? -1 : 1) : 0;
float rateshift = (noteFrq[semiTone] - ((noteFrq[semiTone] -
noteFrq[semiTone + d]) * pwModifier * d)) / noteFrq[semiToneRootkey];
return (float) sampleRate * 10.0f * rateshift / outputRate;
}
const uint8 SoundTowns::_sfxBTTable[256] = {
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F,
0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF,
0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF,
0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF,
0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF,
0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF,
0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFE,
0x7F, 0x7F, 0x7E, 0x7D, 0x7C, 0x7B, 0x7A, 0x79, 0x78, 0x77, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71,
0x70, 0x6F, 0x6E, 0x6D, 0x6C, 0x6B, 0x6A, 0x69, 0x68, 0x67, 0x66, 0x65, 0x64, 0x63, 0x62, 0x61,
0x60, 0x5F, 0x5E, 0x5D, 0x5C, 0x5B, 0x5A, 0x59, 0x58, 0x57, 0x56, 0x55, 0x54, 0x53, 0x52, 0x51,
0x50, 0x4F, 0x4E, 0x4D, 0x4C, 0x4B, 0x4A, 0x49, 0x48, 0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0x41,
0x40, 0x3F, 0x3E, 0x3D, 0x3C, 0x3B, 0x3A, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31,
0x30, 0x2F, 0x2E, 0x2D, 0x2C, 0x2B, 0x2A, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21,
0x20, 0x1F, 0x1E, 0x1D, 0x1C, 0x1B, 0x1A, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11,
0x10, 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01
};
// KYRA 2
SoundTowns_v2::SoundTowns_v2(KyraEngine *vm, Audio::Mixer *mixer)
: Sound(vm, mixer), _lastTrack(-1), _currentSFX(0), /*_driver(0),*/
_twnTrackData(0) {
}
SoundTowns_v2::~SoundTowns_v2() {
/*if (_driver)
delete _driver;*/
if (_twnTrackData)
delete [] _twnTrackData;
}
bool SoundTowns_v2::init() {
//_driver = new SoundTowns_v2_TwnDriver(_mixer);
_vm->checkCD();
// FIXME: While checking for 'track1.XXX(X)' looks like
// a good idea, we should definitely not be doing this
// here. Basically our filenaming scheme could change
// or we could add support for other audio formats. Also
// this misses the possibility that we play the tracks
// right off CD. So we should find another way to
// check if we have access to CD audio.
if (_musicEnabled &&
(Common::File::exists("track1.mp3") || Common::File::exists("track1.ogg") ||
Common::File::exists("track1.flac") || Common::File::exists("track1.fla")))
_musicEnabled = 2;
return true;//_driver->init();
}
void SoundTowns_v2::process() {
AudioCD.updateCD();
}
void SoundTowns_v2::playTrack(uint8 track) {
if (track == _lastTrack && _musicEnabled)
return;
const uint8 * const cdaTracks = (const uint8 * const) cdaData();
int trackNum = -1;
for (uint32 i = 0; i < cdaTrackNum(); i++) {
if (track == cdaTracks[i * 2]) {
trackNum = cdaTracks[i * 2 + 1] - 1;
break;
}
}
haltTrack();
// TODO: figure out when to loop and when not for CD Audio
bool loop = false;
if (_musicEnabled == 2 && trackNum != -1) {
AudioCD.play(trackNum+1, loop ? -1 : 1, 0, 0);
AudioCD.updateCD();
} else if (_musicEnabled) {
char musicfile[13];
sprintf(musicfile, "%s%d.twn", fileListEntry(0), track);
if (_twnTrackData)
delete [] _twnTrackData;
_twnTrackData = _vm->resource()->fileData(musicfile, 0);
//_driver->loadData(_twnTrackData);
}
_lastTrack = track;
}
void SoundTowns_v2::haltTrack() {
_lastTrack = -1;
AudioCD.stop();
AudioCD.updateCD();
//_driver->reset();
}
void SoundTowns_v2::voicePlay(const char *file) {
static const uint16 rates[] = { 0x10E1, 0x0CA9, 0x0870, 0x0654, 0x0438, 0x032A, 0x021C, 0x0194 };
uint8 * data = _vm->resource()->fileData(file, 0);
uint8 * src = data;
uint16 sfxRate = rates[READ_LE_UINT16(src)];
src += 2;
bool compressed = (READ_LE_UINT16(src) & 1) ? true : false;
src += 2;
uint32 outsize = READ_LE_UINT32(src);
uint8 *sfx = (uint8*) malloc(outsize);
uint8 *dst = sfx;
src += 4;
if (compressed) {
for (uint32 i = outsize; i;) {
uint8 cnt = *src++;
if (cnt & 0x80) {
cnt &= 0x7F;
memset(dst, *src++, cnt);
} else {
memcpy(dst, src, cnt);
src += cnt;
}
dst += cnt;
i -= cnt;
}
} else {
memcpy(dst, src, outsize);
}
for (uint32 i = 0; i < outsize; i++) {
uint8 cmd = sfx[i];
if (cmd & 0x80) {
cmd = ~cmd;
} else {
cmd |= 0x80;
if (cmd == 0xff)
cmd--;
}
if (cmd < 0x80)
cmd = 0x80 - cmd;
sfx[i] = cmd;
}
uint32 outputRate = uint32(11025 * SoundTowns::semitoneAndSampleRate_to_sampleStep(0x3c, 0x3c, sfxRate, 11025, 0x2000));
_currentSFX = Audio::makeLinearInputStream(sfx, outsize, outputRate,
Audio::Mixer::FLAG_UNSIGNED | Audio::Mixer::FLAG_LITTLE_ENDIAN | Audio::Mixer::FLAG_AUTOFREE, 0, 0);
_mixer->playInputStream(Audio::Mixer::kSFXSoundType, &_sfxHandle, _currentSFX);
delete [] data;
}
void SoundTowns_v2::beginFadeOut() {
//_driver->fadeOut();
haltTrack();
}
} // end of namespace Kyra
#undef EUPHONY_FADEOUT_TICKS