1361 lines
44 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/debug.h"
#include "common/debug-channels.h"
#include "sci/sci.h"
#include "sci/console.h"
#include "sci/resource.h"
#include "sci/engine/features.h"
#include "sci/engine/state.h"
#include "sci/engine/kernel.h"
#include "sci/engine/object.h"
#include "sci/engine/script.h"
#include "sci/engine/seg_manager.h"
#include "sci/engine/selector.h" // for SELECTOR
#include "sci/engine/gc.h"
#include "sci/engine/workarounds.h"
namespace Sci {
const reg_t NULL_REG = {0, 0};
const reg_t SIGNAL_REG = {0, SIGNAL_OFFSET};
const reg_t TRUE_REG = {0, 1};
// Enable the define below to have the VM abort on cases where a conditional
// statement is followed by an unconditional jump (which will most likely lead
// to an infinite loop). Aids in detecting script bugs such as #3040722.
//#define ABORT_ON_INFINITE_LOOP
// validation functionality
static reg_t &validate_property(EngineState *s, Object *obj, int index) {
// A static dummy reg_t, which we return if obj or index turn out to be
// invalid. Note that we cannot just return NULL_REG, because client code
// may modify the value of the returned reg_t.
static reg_t dummyReg = NULL_REG;
// If this occurs, it means there's probably something wrong with the garbage
// collector, so don't hide it with fake return values
if (!obj)
error("validate_property: Sending to disposed object");
if (getSciVersion() == SCI_VERSION_3)
index = obj->locateVarSelector(s->_segMan, index);
else
index >>= 1;
if (index < 0 || (uint)index >= obj->getVarCount()) {
// This is same way sierra does it and there are some games, that contain such scripts like
// iceman script 998 (fred::canBeHere, executed right at the start)
debugC(kDebugLevelVM, "[VM] Invalid property #%d (out of [0..%d]) requested from object %04x:%04x (%s)",
index, obj->getVarCount(), PRINT_REG(obj->getPos()), s->_segMan->getObjectName(obj->getPos()));
return dummyReg;
}
return obj->getVariableRef(index);
}
static StackPtr validate_stack_addr(EngineState *s, StackPtr sp) {
if (sp >= s->stack_base && sp < s->stack_top)
return sp;
else
error("[VM] Stack index %d out of valid range [%d..%d]",
(int)(sp - s->stack_base), 0, (int)(s->stack_top - s->stack_base - 1));
}
static bool validate_variable(reg_t *r, reg_t *stack_base, int type, int max, int index) {
const char *names[4] = {"global", "local", "temp", "param"};
if (index < 0 || index >= max) {
Common::String txt = Common::String::format(
"[VM] Attempt to use invalid %s variable %04x ",
names[type], index);
if (max == 0)
txt += "(variable type invalid)";
else
txt += Common::String::format("(out of range [%d..%d])", 0, max - 1);
if (type == VAR_PARAM || type == VAR_TEMP) {
int total_offset = r - stack_base;
if (total_offset < 0 || total_offset >= VM_STACK_SIZE) {
// Fatal, as the game is trying to do an OOB access
error("%s. [VM] Access would be outside even of the stack (%d); access denied", txt.c_str(), total_offset);
return false;
} else {
debugC(kDebugLevelVM, "%s", txt.c_str());
debugC(kDebugLevelVM, "[VM] Access within stack boundaries; access granted.");
return true;
}
}
return false;
}
return true;
}
#ifndef REDUCE_MEMORY_USAGE
extern const char *opcodeNames[]; // from scriptdebug.cpp
#endif
static reg_t read_var(EngineState *s, int type, int index) {
if (validate_variable(s->variables[type], s->stack_base, type, s->variablesMax[type], index)) {
if (s->variables[type][index].segment == 0xffff) {
switch (type) {
case VAR_TEMP: {
// Uninitialized read on a temp
// We need to find correct replacements for each situation manually
SciTrackOriginReply originReply;
SciWorkaroundSolution solution = trackOriginAndFindWorkaround(index, uninitializedReadWorkarounds, &originReply);
if (solution.type == WORKAROUND_NONE) {
#ifdef RELEASE_BUILD
// If we are running an official ScummVM release -> fake 0 in unknown cases
warning("Uninitialized read for temp %d from method %s::%s (room %d, script %d, localCall %x)",
index, originReply.objectName.c_str(), originReply.methodName.c_str(), s->currentRoomNumber(),
originReply.scriptNr, originReply.localCallOffset);
s->variables[type][index] = NULL_REG;
break;
#else
error("Uninitialized read for temp %d from method %s::%s (room %d, script %d, localCall %x)",
index, originReply.objectName.c_str(), originReply.methodName.c_str(), s->currentRoomNumber(),
originReply.scriptNr, originReply.localCallOffset);
#endif
}
assert(solution.type == WORKAROUND_FAKE);
s->variables[type][index] = make_reg(0, solution.value);
break;
}
case VAR_PARAM:
// Out-of-bounds read for a parameter that goes onto stack and hits an uninitialized temp
// We return 0 currently in that case
debugC(kDebugLevelVM, "[VM] Read for a parameter goes out-of-bounds, onto the stack and gets uninitialized temp");
return NULL_REG;
default:
break;
}
}
return s->variables[type][index];
} else
return s->r_acc;
}
static void write_var(EngineState *s, int type, int index, reg_t value) {
if (validate_variable(s->variables[type], s->stack_base, type, s->variablesMax[type], index)) {
// WORKAROUND: This code is needed to work around a probable script bug, or a
// limitation of the original SCI engine, which can be observed in LSL5.
//
// In some games, ego walks via the "Grooper" object, in particular its "stopGroop"
// child. In LSL5, during the game, ego is swapped from Larry to Patti. When this
// happens in the original interpreter, the new actor is loaded in the same memory
// location as the old one, therefore the client variable in the stopGroop object
// points to the new actor. This is probably why the reference of the stopGroop
// object is never updated (which is why I mentioned that this is either a script
// bug or some kind of limitation).
//
// In our implementation, each new object is loaded in a different memory location,
// and we can't overwrite the old one. This means that in our implementation,
// whenever ego is changed, we need to update the "client" variable of the
// stopGroop object, which points to ego, to the new ego object. If this is not
// done, ego's movement will not be updated properly, so the result is
// unpredictable (for example in LSL5, Patti spins around instead of walking).
if (index == 0 && type == VAR_GLOBAL && getSciVersion() > SCI_VERSION_0_EARLY) { // global 0 is ego
reg_t stopGroopPos = s->_segMan->findObjectByName("stopGroop");
if (!stopGroopPos.isNull()) { // does the game have a stopGroop object?
// Find the "client" member variable of the stopGroop object, and update it
ObjVarRef varp;
if (lookupSelector(s->_segMan, stopGroopPos, SELECTOR(client), &varp, NULL) == kSelectorVariable) {
reg_t *clientVar = varp.getPointer(s->_segMan);
*clientVar = value;
}
}
}
// If we are writing an uninitialized value into a temp, we remove the uninitialized segment
// this happens at least in sq1/room 44 (slot-machine), because a send is missing parameters, then
// those parameters are taken from uninitialized stack and afterwards they are copied back into temps
// if we don't remove the segment, we would get false-positive uninitialized reads later
if (type == VAR_TEMP && value.segment == 0xffff)
value.segment = 0;
s->variables[type][index] = value;
// If the game is trying to change its speech/subtitle settings, apply the ScummVM audio
// options first, if they haven't been applied yet
if (type == VAR_GLOBAL && index == 90 && !g_sci->getEngineState()->_syncedAudioOptions) {
g_sci->syncIngameAudioOptions();
g_sci->getEngineState()->_syncedAudioOptions = true;
}
}
}
// Operating on the stack
// 16 bit:
#define PUSH(v) PUSH32(make_reg(0, v))
// 32 bit:
#define PUSH32(a) (*(validate_stack_addr(s, (s->xs->sp)++)) = (a))
#define POP32() (*(validate_stack_addr(s, --(s->xs->sp))))
ExecStack *execute_method(EngineState *s, uint16 script, uint16 pubfunct, StackPtr sp, reg_t calling_obj, uint16 argc, StackPtr argp) {
int seg = s->_segMan->getScriptSegment(script);
Script *scr = s->_segMan->getScriptIfLoaded(seg);
if (!scr || scr->isMarkedAsDeleted()) { // Script not present yet?
seg = s->_segMan->instantiateScript(script);
scr = s->_segMan->getScript(seg);
}
int temp = scr->validateExportFunc(pubfunct, false);
if (getSciVersion() == SCI_VERSION_3)
temp += scr->getCodeBlockOffset();
if (!temp) {
#ifdef ENABLE_SCI32
if (g_sci->getGameId() == GID_TORIN && script == 64036) {
// Script 64036 in Torin's Passage is empty and contains an invalid
// (empty) export
} else if (g_sci->getGameId() == GID_RAMA && script == 64908) {
// Script 64908 in the demo of RAMA contains an invalid (empty)
// export
} else
#endif
error("Request for invalid exported function 0x%x of script %d", pubfunct, script);
return NULL;
}
// Check if a breakpoint is set on this method
g_sci->checkExportBreakpoint(script, pubfunct);
ExecStack xstack(calling_obj, calling_obj, sp, argc, argp,
seg, make_reg(seg, temp), -1, pubfunct, -1,
s->_executionStack.size() - 1, EXEC_STACK_TYPE_CALL);
s->_executionStack.push_back(xstack);
return &(s->_executionStack.back());
}
static void _exec_varselectors(EngineState *s) {
// Executes all varselector read/write ops on the TOS
while (!s->_executionStack.empty() && s->_executionStack.back().type == EXEC_STACK_TYPE_VARSELECTOR) {
ExecStack &xs = s->_executionStack.back();
reg_t *var = xs.getVarPointer(s->_segMan);
if (!var) {
error("Invalid varselector exec stack entry");
} else {
// varselector access?
if (xs.argc) { // write?
*var = xs.variables_argp[1];
} else // No, read
s->r_acc = *var;
}
s->_executionStack.pop_back();
}
}
// from scriptdebug.cpp
extern void debugSelectorCall(reg_t send_obj, Selector selector, int argc, StackPtr argp, ObjVarRef &varp, reg_t funcp, SegManager *segMan, SelectorType selectorType);
ExecStack *send_selector(EngineState *s, reg_t send_obj, reg_t work_obj, StackPtr sp, int framesize, StackPtr argp) {
// send_obj and work_obj are equal for anything but 'super'
// Returns a pointer to the TOS exec_stack element
assert(s);
reg_t funcp;
Selector selector;
int argc;
int origin = s->_executionStack.size() - 1; // Origin: Used for debugging
int activeBreakpointTypes = g_sci->_debugState._activeBreakpointTypes;
ObjVarRef varp;
Common::List<ExecStack>::iterator prevElementIterator = s->_executionStack.end();
while (framesize > 0) {
selector = argp->requireUint16();
argp++;
argc = argp->requireUint16();
if (argc > 0x800) // More arguments than the stack could possibly accomodate for
error("send_selector(): More than 0x800 arguments to function call");
SelectorType selectorType = lookupSelector(s->_segMan, send_obj, selector, &varp, &funcp);
if (selectorType == kSelectorNone)
error("Send to invalid selector 0x%x of object at %04x:%04x", 0xffff & selector, PRINT_REG(send_obj));
ExecStackType stackType = EXEC_STACK_TYPE_VARSELECTOR;
StackPtr curSP = NULL;
reg_t curFP = NULL_REG;
if (selectorType == kSelectorMethod) {
stackType = EXEC_STACK_TYPE_CALL;
curSP = sp;
curFP = funcp;
sp = CALL_SP_CARRY; // Destroy sp, as it will be carried over
}
if (activeBreakpointTypes || DebugMan.isDebugChannelEnabled(kDebugLevelScripts))
debugSelectorCall(send_obj, selector, argc, argp, varp, funcp, s->_segMan, selectorType);
ExecStack xstack(work_obj, send_obj, curSP, argc, argp,
0xFFFF, curFP, selector, -1, -1,
origin, stackType);
if (selectorType == kSelectorVariable)
xstack.addr.varp = varp;
// The new stack entries should be put on the stack in reverse order
// so that the first one is executed first
s->_executionStack.insert(prevElementIterator, xstack);
// Decrement the stack end pointer so that it points to our recently
// added element, so that the next insert() places it before this one.
--prevElementIterator;
framesize -= (2 + argc);
argp += argc + 1;
} // while (framesize > 0)
_exec_varselectors(s);
return s->_executionStack.empty() ? NULL : &(s->_executionStack.back());
}
static void addKernelCallToExecStack(EngineState *s, int kernelCallNr, int argc, reg_t *argv) {
// Add stack frame to indicate we're executing a callk.
// This is useful in debugger backtraces if this
// kernel function calls a script itself.
ExecStack xstack(NULL_REG, NULL_REG, NULL, argc, argv - 1, 0xFFFF, NULL_REG,
kernelCallNr, -1, -1, s->_executionStack.size() - 1, EXEC_STACK_TYPE_KERNEL);
s->_executionStack.push_back(xstack);
}
// from scriptdebug.cpp
extern void logKernelCall(const KernelFunction *kernelCall, const KernelSubFunction *kernelSubCall, EngineState *s, int argc, reg_t *argv, reg_t result);
static void callKernelFunc(EngineState *s, int kernelCallNr, int argc) {
Kernel *kernel = g_sci->getKernel();
if (kernelCallNr >= (int)kernel->_kernelFuncs.size())
error("Invalid kernel function 0x%x requested", kernelCallNr);
const KernelFunction &kernelCall = kernel->_kernelFuncs[kernelCallNr];
reg_t *argv = s->xs->sp + 1;
if (kernelCall.signature
&& !kernel->signatureMatch(kernelCall.signature, argc, argv)) {
// signature mismatch, check if a workaround is available
SciTrackOriginReply originReply;
SciWorkaroundSolution solution = trackOriginAndFindWorkaround(0, kernelCall.workarounds, &originReply);
switch (solution.type) {
case WORKAROUND_NONE:
kernel->signatureDebug(kernelCall.signature, argc, argv);
error("[VM] k%s[%x]: signature mismatch via method %s::%s (room %d, script %d, localCall 0x%x)",
kernelCall.name, kernelCallNr, originReply.objectName.c_str(), originReply.methodName.c_str(),
s->currentRoomNumber(), originReply.scriptNr, originReply.localCallOffset);
break;
case WORKAROUND_IGNORE: // don't do kernel call, leave acc alone
return;
case WORKAROUND_STILLCALL: // call kernel anyway
break;
case WORKAROUND_FAKE: // don't do kernel call, fake acc
s->r_acc = make_reg(0, solution.value);
return;
default:
error("unknown workaround type");
}
}
// Call kernel function
if (!kernelCall.subFunctionCount) {
addKernelCallToExecStack(s, kernelCallNr, argc, argv);
s->r_acc = kernelCall.function(s, argc, argv);
if (kernelCall.debugLogging)
logKernelCall(&kernelCall, NULL, s, argc, argv, s->r_acc);
if (kernelCall.debugBreakpoint) {
debugN("Break on k%s\n", kernelCall.name);
g_sci->_debugState.debugging = true;
g_sci->_debugState.breakpointWasHit = true;
}
} else {
// Sub-functions available, check signature and call that one directly
if (argc < 1)
error("[VM] k%s[%x]: no subfunction ID parameter given", kernelCall.name, kernelCallNr);
if (argv[0].isPointer())
error("[VM] k%s[%x]: given subfunction ID is actually a pointer", kernelCall.name, kernelCallNr);
const uint16 subId = argv[0].toUint16();
// Skip over subfunction-id
argc--;
argv++;
if (subId >= kernelCall.subFunctionCount)
error("[VM] k%s: subfunction ID %d requested, but not available", kernelCall.name, subId);
const KernelSubFunction &kernelSubCall = kernelCall.subFunctions[subId];
if (kernelSubCall.signature && !kernel->signatureMatch(kernelSubCall.signature, argc, argv)) {
// Signature mismatch
SciTrackOriginReply originReply;
SciWorkaroundSolution solution = trackOriginAndFindWorkaround(0, kernelSubCall.workarounds, &originReply);
switch (solution.type) {
case WORKAROUND_NONE: {
kernel->signatureDebug(kernelSubCall.signature, argc, argv);
int callNameLen = strlen(kernelCall.name);
if (strncmp(kernelCall.name, kernelSubCall.name, callNameLen) == 0) {
const char *subCallName = kernelSubCall.name + callNameLen;
error("[VM] k%s(%s): signature mismatch via method %s::%s (room %d, script %d, localCall %x)",
kernelCall.name, subCallName, originReply.objectName.c_str(), originReply.methodName.c_str(),
s->currentRoomNumber(), originReply.scriptNr, originReply.localCallOffset);
}
error("[VM] k%s: signature mismatch via method %s::%s (room %d, script %d, localCall %x)",
kernelSubCall.name, originReply.objectName.c_str(), originReply.methodName.c_str(),
s->currentRoomNumber(), originReply.scriptNr, originReply.localCallOffset);
break;
}
case WORKAROUND_IGNORE: // don't do kernel call, leave acc alone
return;
case WORKAROUND_STILLCALL: // call kernel anyway
break;
case WORKAROUND_FAKE: // don't do kernel call, fake acc
s->r_acc = make_reg(0, solution.value);
return;
default:
error("unknown workaround type");
}
}
if (!kernelSubCall.function)
error("[VM] k%s: subfunction ID %d requested, but not available", kernelCall.name, subId);
addKernelCallToExecStack(s, kernelCallNr, argc, argv);
s->r_acc = kernelSubCall.function(s, argc, argv);
if (kernelSubCall.debugLogging)
logKernelCall(&kernelCall, &kernelSubCall, s, argc, argv, s->r_acc);
if (kernelSubCall.debugBreakpoint) {
debugN("Break on k%s\n", kernelSubCall.name);
g_sci->_debugState.debugging = true;
g_sci->_debugState.breakpointWasHit = true;
}
}
// Remove callk stack frame again, if there's still an execution stack
if (s->_executionStack.begin() != s->_executionStack.end())
s->_executionStack.pop_back();
}
int readPMachineInstruction(const byte *src, byte &extOpcode, int16 opparams[4]) {
uint offset = 0;
extOpcode = src[offset++]; // Get "extended" opcode (lower bit has special meaning)
const byte opcode = extOpcode >> 1; // get the actual opcode
memset(opparams, 0, 4*sizeof(int16));
for (int i = 0; g_sci->_opcode_formats[opcode][i]; ++i) {
//debugN("Opcode: 0x%x, Opnumber: 0x%x, temp: %d\n", opcode, opcode, temp);
assert(i < 3);
switch (g_sci->_opcode_formats[opcode][i]) {
case Script_Byte:
opparams[i] = src[offset++];
break;
case Script_SByte:
opparams[i] = (int8)src[offset++];
break;
case Script_Word:
opparams[i] = READ_SCI11ENDIAN_UINT16(src + offset);
offset += 2;
break;
case Script_SWord:
opparams[i] = (int16)READ_SCI11ENDIAN_UINT16(src + offset);
offset += 2;
break;
case Script_Variable:
case Script_Property:
case Script_Local:
case Script_Temp:
case Script_Global:
case Script_Param:
case Script_Offset:
if (extOpcode & 1) {
opparams[i] = src[offset++];
} else {
opparams[i] = READ_SCI11ENDIAN_UINT16(src + offset);
offset += 2;
}
break;
case Script_SVariable:
case Script_SRelative:
if (extOpcode & 1) {
opparams[i] = (int8)src[offset++];
} else {
opparams[i] = (int16)READ_SCI11ENDIAN_UINT16(src + offset);
offset += 2;
}
break;
case Script_None:
case Script_End:
break;
case Script_Invalid:
default:
error("opcode %02x: Invalid", extOpcode);
}
}
// Special handling of the op_line opcode
if (opcode == op_pushSelf) {
// Compensate for a bug in non-Sierra compilers, which seem to generate
// pushSelf instructions with the low bit set. This makes the following
// heuristic fail and leads to endless loops and crashes. Our
// interpretation of this seems correct, as other SCI tools, like for
// example SCI Viewer, have issues with these scripts (e.g. script 999
// in Circus Quest). Fixes bug #3038686.
if (!(extOpcode & 1) || g_sci->getGameId() == GID_FANMADE) {
// op_pushSelf: no adjustment necessary
} else {
// Debug opcode op_file, skip null-terminated string (file name)
while (src[offset++]) {}
}
}
return offset;
}
void run_vm(EngineState *s) {
assert(s);
int temp;
reg_t r_temp; // Temporary register
StackPtr s_temp; // Temporary stack pointer
int16 opparams[4]; // opcode parameters
s->r_rest = 0; // &rest adjusts the parameter count by this value
// Current execution data:
s->xs = &(s->_executionStack.back());
ExecStack *xs_new = NULL;
Object *obj = s->_segMan->getObject(s->xs->objp);
Script *scr = 0;
Script *local_script = s->_segMan->getScriptIfLoaded(s->xs->local_segment);
int old_executionStackBase = s->executionStackBase;
// Used to detect the stack bottom, for "physical" returns
if (!local_script)
error("run_vm(): program counter gone astray (local_script pointer is null)");
s->executionStackBase = s->_executionStack.size() - 1;
s->variablesSegment[VAR_TEMP] = s->variablesSegment[VAR_PARAM] = s->_segMan->findSegmentByType(SEG_TYPE_STACK);
s->variablesBase[VAR_TEMP] = s->variablesBase[VAR_PARAM] = s->stack_base;
s->_executionStackPosChanged = true; // Force initialization
#ifdef ABORT_ON_INFINITE_LOOP
byte prevOpcode = 0xFF;
#endif
while (1) {
int var_type; // See description below
int var_number;
g_sci->_debugState.old_pc_offset = s->xs->addr.pc.offset;
g_sci->_debugState.old_sp = s->xs->sp;
if (s->abortScriptProcessing != kAbortNone)
return; // Stop processing
if (s->_executionStackPosChanged) {
scr = s->_segMan->getScriptIfLoaded(s->xs->addr.pc.segment);
if (!scr)
error("No script in segment %d", s->xs->addr.pc.segment);
s->xs = &(s->_executionStack.back());
s->_executionStackPosChanged = false;
obj = s->_segMan->getObject(s->xs->objp);
local_script = s->_segMan->getScriptIfLoaded(s->xs->local_segment);
if (!local_script) {
error("Could not find local script from segment %x", s->xs->local_segment);
} else {
s->variablesSegment[VAR_LOCAL] = local_script->getLocalsSegment();
s->variablesBase[VAR_LOCAL] = s->variables[VAR_LOCAL] = local_script->getLocalsBegin();
s->variablesMax[VAR_LOCAL] = local_script->getLocalsCount();
s->variablesMax[VAR_TEMP] = s->xs->sp - s->xs->fp;
s->variablesMax[VAR_PARAM] = s->xs->argc + 1;
}
s->variables[VAR_TEMP] = s->xs->fp;
s->variables[VAR_PARAM] = s->xs->variables_argp;
}
if (s->abortScriptProcessing != kAbortNone)
return; // Stop processing
// Debug if this has been requested:
// TODO: re-implement sci_debug_flags
if (g_sci->_debugState.debugging /* sci_debug_flags*/) {
g_sci->scriptDebug();
g_sci->_debugState.breakpointWasHit = false;
}
Console *con = g_sci->getSciDebugger();
con->onFrame();
if (s->xs->sp < s->xs->fp)
error("run_vm(): stack underflow, sp: %04x:%04x, fp: %04x:%04x",
PRINT_REG(*s->xs->sp), PRINT_REG(*s->xs->fp));
s->variablesMax[VAR_TEMP] = s->xs->sp - s->xs->fp;
if (s->xs->addr.pc.offset >= scr->getBufSize())
error("run_vm(): program counter gone astray, addr: %d, code buffer size: %d",
s->xs->addr.pc.offset, scr->getBufSize());
// Get opcode
byte extOpcode;
s->xs->addr.pc.offset += readPMachineInstruction(scr->getBuf() + s->xs->addr.pc.offset, extOpcode, opparams);
const byte opcode = extOpcode >> 1;
//debug("%s: %d, %d, %d, %d, acc = %04x:%04x, script %d, local script %d", opcodeNames[opcode], opparams[0], opparams[1], opparams[2], opparams[3], PRINT_REG(s->r_acc), scr->getScriptNumber(), local_script->getScriptNumber());
#ifdef ABORT_ON_INFINITE_LOOP
if (prevOpcode != 0xFF) {
if (prevOpcode == op_eq_ || prevOpcode == op_ne_ ||
prevOpcode == op_gt_ || prevOpcode == op_ge_ ||
prevOpcode == op_lt_ || prevOpcode == op_le_ ||
prevOpcode == op_ugt_ || prevOpcode == op_uge_ ||
prevOpcode == op_ult_ || prevOpcode == op_ule_) {
if (opcode == op_jmp)
error("Infinite loop detected in script %d", scr->getScriptNumber());
}
}
prevOpcode = opcode;
#endif
switch (opcode) {
case op_bnot: // 0x00 (00)
// Binary not
s->r_acc = make_reg(0, 0xffff ^ s->r_acc.requireUint16());
break;
case op_add: // 0x01 (01)
s->r_acc = POP32() + s->r_acc;
break;
case op_sub: // 0x02 (02)
s->r_acc = POP32() - s->r_acc;
break;
case op_mul: // 0x03 (03)
s->r_acc = POP32() * s->r_acc;
break;
case op_div: // 0x04 (04)
// we check for division by 0 inside the custom reg_t division operator
s->r_acc = POP32() / s->r_acc;
break;
case op_mod: // 0x05 (05)
// we check for division by 0 inside the custom reg_t modulo operator
s->r_acc = POP32() % s->r_acc;
break;
case op_shr: // 0x06 (06)
// Shift right logical
s->r_acc = POP32() >> s->r_acc;
break;
case op_shl: // 0x07 (07)
// Shift left logical
s->r_acc = POP32() << s->r_acc;
break;
case op_xor: // 0x08 (08)
s->r_acc = POP32() ^ s->r_acc;
break;
case op_and: // 0x09 (09)
s->r_acc = POP32() & s->r_acc;
break;
case op_or: // 0x0a (10)
s->r_acc = POP32() | s->r_acc;
break;
case op_neg: // 0x0b (11)
s->r_acc = make_reg(0, -s->r_acc.requireSint16());
break;
case op_not: // 0x0c (12)
s->r_acc = make_reg(0, !(s->r_acc.offset || s->r_acc.segment));
// Must allow pointers to be negated, as this is used for checking whether objects exist
break;
case op_eq_: // 0x0d (13)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32() == s->r_acc);
break;
case op_ne_: // 0x0e (14)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32() != s->r_acc);
break;
case op_gt_: // 0x0f (15)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32() > s->r_acc);
break;
case op_ge_: // 0x10 (16)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32() >= s->r_acc);
break;
case op_lt_: // 0x11 (17)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32() < s->r_acc);
break;
case op_le_: // 0x12 (18)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32() <= s->r_acc);
break;
case op_ugt_: // 0x13 (19)
// > (unsigned)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32().gtU(s->r_acc));
break;
case op_uge_: // 0x14 (20)
// >= (unsigned)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32().geU(s->r_acc));
break;
case op_ult_: // 0x15 (21)
// < (unsigned)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32().ltU(s->r_acc));
break;
case op_ule_: // 0x16 (22)
// <= (unsigned)
s->r_prev = s->r_acc;
s->r_acc = make_reg(0, POP32().leU(s->r_acc));
break;
case op_bt: // 0x17 (23)
// Branch relative if true
if (s->r_acc.offset || s->r_acc.segment)
s->xs->addr.pc.offset += opparams[0];
if (s->xs->addr.pc.offset >= local_script->getScriptSize())
error("[VM] op_bt: request to jump past the end of script %d (offset %d, script is %d bytes)",
local_script->getScriptNumber(), s->xs->addr.pc.offset, local_script->getScriptSize());
break;
case op_bnt: // 0x18 (24)
// Branch relative if not true
if (!(s->r_acc.offset || s->r_acc.segment))
s->xs->addr.pc.offset += opparams[0];
if (s->xs->addr.pc.offset >= local_script->getScriptSize())
error("[VM] op_bnt: request to jump past the end of script %d (offset %d, script is %d bytes)",
local_script->getScriptNumber(), s->xs->addr.pc.offset, local_script->getScriptSize());
break;
case op_jmp: // 0x19 (25)
s->xs->addr.pc.offset += opparams[0];
if (s->xs->addr.pc.offset >= local_script->getScriptSize())
error("[VM] op_jmp: request to jump past the end of script %d (offset %d, script is %d bytes)",
local_script->getScriptNumber(), s->xs->addr.pc.offset, local_script->getScriptSize());
break;
case op_ldi: // 0x1a (26)
// Load data immediate
s->r_acc = make_reg(0, opparams[0]);
break;
case op_push: // 0x1b (27)
// Push to stack
PUSH32(s->r_acc);
break;
case op_pushi: // 0x1c (28)
// Push immediate
PUSH(opparams[0]);
break;
case op_toss: // 0x1d (29)
// TOS (Top Of Stack) subtract
s->xs->sp--;
break;
case op_dup: // 0x1e (30)
// Duplicate TOD (Top Of Stack) element
r_temp = s->xs->sp[-1];
PUSH32(r_temp);
break;
case op_link: // 0x1f (31)
// We shouldn't initialize temp variables at all
// We put special segment 0xFFFF in there, so that uninitialized reads can get detected
for (int i = 0; i < opparams[0]; i++)
s->xs->sp[i] = make_reg(0xffff, 0);
s->xs->sp += opparams[0];
break;
case op_call: { // 0x20 (32)
// Call a script subroutine
int argc = (opparams[1] >> 1) // Given as offset, but we need count
+ 1 + s->r_rest;
StackPtr call_base = s->xs->sp - argc;
s->xs->sp[1].offset += s->r_rest;
uint16 localCallOffset = s->xs->addr.pc.offset + opparams[0];
ExecStack xstack(s->xs->objp, s->xs->objp, s->xs->sp,
(call_base->requireUint16()) + s->r_rest, call_base,
s->xs->local_segment, make_reg(s->xs->addr.pc.segment, localCallOffset),
NULL_SELECTOR, -1, localCallOffset, s->_executionStack.size() - 1,
EXEC_STACK_TYPE_CALL);
s->_executionStack.push_back(xstack);
xs_new = &(s->_executionStack.back());
s->r_rest = 0; // Used up the &rest adjustment
s->xs->sp = call_base;
s->_executionStackPosChanged = true;
break;
}
case op_callk: { // 0x21 (33)
// Run the garbage collector, if needed
if (s->gcCountDown-- <= 0) {
s->gcCountDown = s->scriptGCInterval;
run_gc(s);
}
// Call kernel function
s->xs->sp -= (opparams[1] >> 1) + 1;
bool oldScriptHeader = (getSciVersion() == SCI_VERSION_0_EARLY);
if (!oldScriptHeader)
s->xs->sp -= s->r_rest;
int argc = s->xs->sp[0].requireUint16();
if (!oldScriptHeader)
argc += s->r_rest;
callKernelFunc(s, opparams[0], argc);
if (!oldScriptHeader)
s->r_rest = 0;
// Calculate xs again: The kernel function might
// have spawned a new VM
xs_new = &(s->_executionStack.back());
s->_executionStackPosChanged = true;
// If a game is being loaded, stop processing
if (s->abortScriptProcessing != kAbortNone)
return; // Stop processing
break;
}
case op_callb: // 0x22 (34)
// Call base script
temp = ((opparams[1] >> 1) + s->r_rest + 1);
s_temp = s->xs->sp;
s->xs->sp -= temp;
s->xs->sp[0].offset += s->r_rest;
xs_new = execute_method(s, 0, opparams[0], s_temp, s->xs->objp,
s->xs->sp[0].offset, s->xs->sp);
s->r_rest = 0; // Used up the &rest adjustment
if (xs_new) // in case of error, keep old stack
s->_executionStackPosChanged = true;
break;
case op_calle: // 0x23 (35)
// Call external script
temp = ((opparams[2] >> 1) + s->r_rest + 1);
s_temp = s->xs->sp;
s->xs->sp -= temp;
s->xs->sp[0].offset += s->r_rest;
xs_new = execute_method(s, opparams[0], opparams[1], s_temp, s->xs->objp,
s->xs->sp[0].offset, s->xs->sp);
s->r_rest = 0; // Used up the &rest adjustment
if (xs_new) // in case of error, keep old stack
s->_executionStackPosChanged = true;
break;
case op_ret: // 0x24 (36)
// Return from an execution loop started by call, calle, callb, send, self or super
do {
StackPtr old_sp2 = s->xs->sp;
StackPtr old_fp = s->xs->fp;
ExecStack *old_xs = &(s->_executionStack.back());
if ((int)s->_executionStack.size() - 1 == s->executionStackBase) { // Have we reached the base?
s->executionStackBase = old_executionStackBase; // Restore stack base
s->_executionStack.pop_back();
s->_executionStackPosChanged = true;
return; // "Hard" return
}
if (old_xs->type == EXEC_STACK_TYPE_VARSELECTOR) {
// varselector access?
reg_t *var = old_xs->getVarPointer(s->_segMan);
if (old_xs->argc) // write?
*var = old_xs->variables_argp[1];
else // No, read
s->r_acc = *var;
}
// Not reached the base, so let's do a soft return
s->_executionStack.pop_back();
s->_executionStackPosChanged = true;
s->xs = &(s->_executionStack.back());
if (s->xs->sp == CALL_SP_CARRY // Used in sends to 'carry' the stack pointer
|| s->xs->type != EXEC_STACK_TYPE_CALL) {
s->xs->sp = old_sp2;
s->xs->fp = old_fp;
}
} while (s->xs->type == EXEC_STACK_TYPE_VARSELECTOR);
// Iterate over all varselector accesses
s->_executionStackPosChanged = true;
xs_new = s->xs;
break;
case op_send: // 0x25 (37)
// Send for one or more selectors
s_temp = s->xs->sp;
s->xs->sp -= ((opparams[0] >> 1) + s->r_rest); // Adjust stack
s->xs->sp[1].offset += s->r_rest;
xs_new = send_selector(s, s->r_acc, s->r_acc, s_temp,
(int)(opparams[0] >> 1) + (uint16)s->r_rest, s->xs->sp);
if (xs_new && xs_new != s->xs)
s->_executionStackPosChanged = true;
s->r_rest = 0;
break;
case 0x26: // (38)
case 0x27: // (39)
if (getSciVersion() == SCI_VERSION_3) {
if (extOpcode == 0x4c)
s->r_acc = obj->getInfoSelector();
else if (extOpcode == 0x4d)
PUSH32(obj->getInfoSelector());
else if (extOpcode == 0x4e)
s->r_acc = obj->getSuperClassSelector(); // TODO: is this correct?
// TODO: There are also opcodes in
// here to get the superclass, and possibly the species too.
else
error("Dummy opcode 0x%x called", opcode); // should never happen
} else
error("Dummy opcode 0x%x called", opcode); // should never happen
break;
case op_class: // 0x28 (40)
// Get class address
s->r_acc = s->_segMan->getClassAddress((unsigned)opparams[0], SCRIPT_GET_LOCK,
s->xs->addr.pc);
break;
case 0x29: // (41)
error("Dummy opcode 0x%x called", opcode); // should never happen
break;
case op_self: // 0x2a (42)
// Send to self
s_temp = s->xs->sp;
s->xs->sp -= ((opparams[0] >> 1) + s->r_rest); // Adjust stack
s->xs->sp[1].offset += s->r_rest;
xs_new = send_selector(s, s->xs->objp, s->xs->objp,
s_temp, (int)(opparams[0] >> 1) + (uint16)s->r_rest,
s->xs->sp);
if (xs_new && xs_new != s->xs)
s->_executionStackPosChanged = true;
s->r_rest = 0;
break;
case op_super: // 0x2b (43)
// Send to any class
r_temp = s->_segMan->getClassAddress(opparams[0], SCRIPT_GET_LOAD, s->xs->addr.pc);
if (!r_temp.isPointer())
error("[VM]: Invalid superclass in object");
else {
s_temp = s->xs->sp;
s->xs->sp -= ((opparams[1] >> 1) + s->r_rest); // Adjust stack
s->xs->sp[1].offset += s->r_rest;
xs_new = send_selector(s, r_temp, s->xs->objp, s_temp,
(int)(opparams[1] >> 1) + (uint16)s->r_rest,
s->xs->sp);
if (xs_new && xs_new != s->xs)
s->_executionStackPosChanged = true;
s->r_rest = 0;
}
break;
case op_rest: // 0x2c (44)
// Pushes all or part of the parameter variable list on the stack
temp = (uint16) opparams[0]; // First argument
s->r_rest = MAX<int16>(s->xs->argc - temp + 1, 0); // +1 because temp counts the paramcount while argc doesn't
for (; temp <= s->xs->argc; temp++)
PUSH32(s->xs->variables_argp[temp]);
break;
case op_lea: // 0x2d (45)
// Load Effective Address
temp = (uint16) opparams[0] >> 1;
var_number = temp & 0x03; // Get variable type
// Get variable block offset
r_temp.segment = s->variablesSegment[var_number];
r_temp.offset = s->variables[var_number] - s->variablesBase[var_number];
if (temp & 0x08) // Add accumulator offset if requested
r_temp.offset += s->r_acc.requireSint16();
r_temp.offset += opparams[1]; // Add index
r_temp.offset *= 2; // variables are 16 bit
// That's the immediate address now
s->r_acc = r_temp;
break;
case op_selfID: // 0x2e (46)
// Get 'self' identity
s->r_acc = s->xs->objp;
break;
case 0x2f: // (47)
error("Dummy opcode 0x%x called", opcode); // should never happen
break;
case op_pprev: // 0x30 (48)
// Pushes the value of the prev register, set by the last comparison
// bytecode (eq?, lt?, etc.), on the stack
PUSH32(s->r_prev);
break;
case op_pToa: // 0x31 (49)
// Property To Accumulator
s->r_acc = validate_property(s, obj, opparams[0]);
break;
case op_aTop: // 0x32 (50)
// Accumulator To Property
validate_property(s, obj, opparams[0]) = s->r_acc;
break;
case op_pTos: // 0x33 (51)
// Property To Stack
PUSH32(validate_property(s, obj, opparams[0]));
break;
case op_sTop: // 0x34 (52)
// Stack To Property
validate_property(s, obj, opparams[0]) = POP32();
break;
case op_ipToa: // 0x35 (53)
case op_dpToa: // 0x36 (54)
case op_ipTos: // 0x37 (55)
case op_dpTos: // 0x38 (56)
{
// Increment/decrement a property and copy to accumulator,
// or push to stack
reg_t &opProperty = validate_property(s, obj, opparams[0]);
if (opcode & 1)
opProperty += 1;
else
opProperty -= 1;
if (opcode == op_ipToa || opcode == op_dpToa)
s->r_acc = opProperty;
else
PUSH32(opProperty);
break;
}
case op_lofsa: // 0x39 (57)
case op_lofss: // 0x3a (58)
// Load offset to accumulator or push to stack
r_temp.segment = s->xs->addr.pc.segment;
switch (g_sci->_features->detectLofsType()) {
case SCI_VERSION_0_EARLY:
r_temp.offset = s->xs->addr.pc.offset + opparams[0];
break;
case SCI_VERSION_1_MIDDLE:
r_temp.offset = opparams[0];
break;
case SCI_VERSION_1_1:
r_temp.offset = opparams[0] + local_script->getScriptSize();
break;
case SCI_VERSION_3:
// In theory this can break if the variant with a one-byte argument is
// used. For now, assume it doesn't happen.
r_temp.offset = local_script->relocateOffsetSci3(s->xs->addr.pc.offset-2);
break;
default:
error("Unknown lofs type");
}
if (r_temp.offset >= scr->getBufSize())
error("VM: lofsa/lofss operation overflowed: %04x:%04x beyond end"
" of script (at %04x)", PRINT_REG(r_temp), scr->getBufSize());
if (opcode == op_lofsa)
s->r_acc = r_temp;
else
PUSH32(r_temp);
break;
case op_push0: // 0x3b (59)
PUSH(0);
break;
case op_push1: // 0x3c (60)
PUSH(1);
break;
case op_push2: // 0x3d (61)
PUSH(2);
break;
case op_pushSelf: // 0x3e (62)
// Compensate for a bug in non-Sierra compilers, which seem to generate
// pushSelf instructions with the low bit set. This makes the following
// heuristic fail and leads to endless loops and crashes. Our
// interpretation of this seems correct, as other SCI tools, like for
// example SCI Viewer, have issues with these scripts (e.g. script 999
// in Circus Quest). Fixes bug #3038686.
if (!(extOpcode & 1) || g_sci->getGameId() == GID_FANMADE) {
PUSH32(s->xs->objp);
} else {
// Debug opcode op_file
}
break;
case op_line: // 0x3f (63)
// Debug opcode (line number)
break;
case op_lag: // 0x40 (64)
case op_lal: // 0x41 (65)
case op_lat: // 0x42 (66)
case op_lap: // 0x43 (67)
// Load global, local, temp or param variable into the accumulator
case op_lagi: // 0x48 (72)
case op_lali: // 0x49 (73)
case op_lati: // 0x4a (74)
case op_lapi: // 0x4b (75)
// Same as the 4 ones above, except that the accumulator is used as
// an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + (opcode >= op_lagi ? s->r_acc.requireSint16() : 0);
s->r_acc = read_var(s, var_type, var_number);
break;
case op_lsg: // 0x44 (68)
case op_lsl: // 0x45 (69)
case op_lst: // 0x46 (70)
case op_lsp: // 0x47 (71)
// Load global, local, temp or param variable into the stack
case op_lsgi: // 0x4c (76)
case op_lsli: // 0x4d (77)
case op_lsti: // 0x4e (78)
case op_lspi: // 0x4f (79)
// Same as the 4 ones above, except that the accumulator is used as
// an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + (opcode >= op_lsgi ? s->r_acc.requireSint16() : 0);
PUSH32(read_var(s, var_type, var_number));
break;
case op_sag: // 0x50 (80)
case op_sal: // 0x51 (81)
case op_sat: // 0x52 (82)
case op_sap: // 0x53 (83)
// Save the accumulator into the global, local, temp or param variable
case op_sagi: // 0x58 (88)
case op_sali: // 0x59 (89)
case op_sati: // 0x5a (90)
case op_sapi: // 0x5b (91)
// Save the accumulator into the global, local, temp or param variable,
// using the accumulator as an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + (opcode >= op_sagi ? s->r_acc.requireSint16() : 0);
if (opcode >= op_sagi) // load the actual value to store in the accumulator
s->r_acc = POP32();
write_var(s, var_type, var_number, s->r_acc);
break;
case op_ssg: // 0x54 (84)
case op_ssl: // 0x55 (85)
case op_sst: // 0x56 (86)
case op_ssp: // 0x57 (87)
// Save the stack into the global, local, temp or param variable
case op_ssgi: // 0x5c (92)
case op_ssli: // 0x5d (93)
case op_ssti: // 0x5e (94)
case op_sspi: // 0x5f (95)
// Same as the 4 ones above, except that the accumulator is used as
// an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + (opcode >= op_ssgi ? s->r_acc.requireSint16() : 0);
write_var(s, var_type, var_number, POP32());
break;
case op_plusag: // 0x60 (96)
case op_plusal: // 0x61 (97)
case op_plusat: // 0x62 (98)
case op_plusap: // 0x63 (99)
// Increment the global, local, temp or param variable and save it
// to the accumulator
case op_plusagi: // 0x68 (104)
case op_plusali: // 0x69 (105)
case op_plusati: // 0x6a (106)
case op_plusapi: // 0x6b (107)
// Same as the 4 ones above, except that the accumulator is used as
// an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + (opcode >= op_plusagi ? s->r_acc.requireSint16() : 0);
s->r_acc = read_var(s, var_type, var_number) + 1;
write_var(s, var_type, var_number, s->r_acc);
break;
case op_plussg: // 0x64 (100)
case op_plussl: // 0x65 (101)
case op_plusst: // 0x66 (102)
case op_plussp: // 0x67 (103)
// Increment the global, local, temp or param variable and save it
// to the stack
case op_plussgi: // 0x6c (108)
case op_plussli: // 0x6d (109)
case op_plussti: // 0x6e (110)
case op_plusspi: // 0x6f (111)
// Same as the 4 ones above, except that the accumulator is used as
// an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + (opcode >= op_plussgi ? s->r_acc.requireSint16() : 0);
r_temp = read_var(s, var_type, var_number) + 1;
PUSH32(r_temp);
write_var(s, var_type, var_number, r_temp);
break;
case op_minusag: // 0x70 (112)
case op_minusal: // 0x71 (113)
case op_minusat: // 0x72 (114)
case op_minusap: // 0x73 (115)
// Decrement the global, local, temp or param variable and save it
// to the accumulator
case op_minusagi: // 0x78 (120)
case op_minusali: // 0x79 (121)
case op_minusati: // 0x7a (122)
case op_minusapi: // 0x7b (123)
// Same as the 4 ones above, except that the accumulator is used as
// an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + (opcode >= op_minusagi ? s->r_acc.requireSint16() : 0);
s->r_acc = read_var(s, var_type, var_number) - 1;
write_var(s, var_type, var_number, s->r_acc);
break;
case op_minussg: // 0x74 (116)
case op_minussl: // 0x75 (117)
case op_minusst: // 0x76 (118)
case op_minussp: // 0x77 (119)
// Decrement the global, local, temp or param variable and save it
// to the stack
case op_minussgi: // 0x7c (124)
case op_minussli: // 0x7d (125)
case op_minussti: // 0x7e (126)
case op_minusspi: // 0x7f (127)
// Same as the 4 ones above, except that the accumulator is used as
// an additional index
var_type = opcode & 0x3; // Gets the variable type: g, l, t or p
var_number = opparams[0] + (opcode >= op_minussgi ? s->r_acc.requireSint16() : 0);
r_temp = read_var(s, var_type, var_number) - 1;
PUSH32(r_temp);
write_var(s, var_type, var_number, r_temp);
break;
default:
error("run_vm(): illegal opcode %x", opcode);
} // switch (opcode)
if (s->_executionStackPosChanged) // Force initialization
s->xs = xs_new;
if (s->xs != &(s->_executionStack.back())) {
error("xs is stale (%p vs %p); last command was %02x",
(void *)s->xs, (void *)&(s->_executionStack.back()),
opcode);
}
++s->scriptStepCounter;
}
}
reg_t *ObjVarRef::getPointer(SegManager *segMan) const {
Object *o = segMan->getObject(obj);
return o ? &o->getVariableRef(varindex) : 0;
}
reg_t *ExecStack::getVarPointer(SegManager *segMan) const {
assert(type == EXEC_STACK_TYPE_VARSELECTOR);
return addr.varp.getPointer(segMan);
}
} // End of namespace Sci