snes9x/debug.cpp
2011-04-11 21:51:20 +02:00

2627 lines
62 KiB
C++

/***********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com),
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com)
(c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net),
Nach (n-a-c-h@users.sourceforge.net),
(c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com)
(c) Copyright 2006 - 2007 nitsuja
(c) Copyright 2009 - 2011 BearOso,
OV2
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com),
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code used in 1.39-1.51
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
SPC7110 and RTC C++ emulator code used in 1.52+
(c) Copyright 2009 byuu,
neviksti
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001 - 2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound emulator code used in 1.5-1.51
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
Sound emulator code used in 1.52+
(c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com)
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x, HQ3x, HQ4x filters
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
NTSC filter
(c) Copyright 2006 - 2007 Shay Green
GTK+ GUI code
(c) Copyright 2004 - 2011 BearOso
Win32 GUI code
(c) Copyright 2003 - 2006 blip,
funkyass,
Matthew Kendora,
Nach,
nitsuja
(c) Copyright 2009 - 2011 OV2
Mac OS GUI code
(c) Copyright 1998 - 2001 John Stiles
(c) Copyright 2001 - 2011 zones
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com/
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
***********************************************************************************/
#ifdef DEBUGGER
#include <stdarg.h>
#include "snes9x.h"
#include "memmap.h"
#include "cpuops.h"
#include "dma.h"
#include "apu/apu.h"
#include "display.h"
#include "debug.h"
#include "missing.h"
extern SDMA DMA[8];
extern FILE *apu_trace;
FILE *trace = NULL, *trace2 = NULL;
struct SBreakPoint S9xBreakpoint[6];
struct SDebug
{
struct
{
uint8 Bank;
uint16 Address;
} Dump;
struct
{
uint8 Bank;
uint16 Address;
} Unassemble;
};
static struct SDebug Debug = { { 0, 0 }, { 0, 0 } };
static const char *HelpMessage[] =
{
"Command Help:",
"?, help - Shows this command help",
"r - Shows the registers",
"i - Shows the interrupt vectors",
"t - Trace current instruction [step-into]",
"p - Proceed to next instruction [step-over]",
"s - Skip to next instruction [skip]",
"T - Toggle CPU instruction tracing to trace.log",
"TS - Toggle SA-1 instruction tracing to trace_sa1.log",
"E - Toggle HC-based event tracing to trace.log",
"V - Toggle non-DMA V-RAM read/write tracing to stdout",
"D - Toggle on-screen DMA tracing",
"H - Toggle on-screen HDMA tracing",
"U - Toggle on-screen unknown register read/write tracing",
"P - Toggle on-screen DSP tracing",
"S - Dump sprite (OBJ) status",
"g [Address] - Go or go to [Address]",
"u [Address] - Disassemble from PC or [Address]",
"d [Address] - Dump from PC or [Address]",
"bv [Number] - View breakpoints or view breakpoint [Number]",
"bs [Number] [Address] - Enable/disable breakpoint",
" [enable example: bs #2 $02:8002]",
" [disable example: bs #2]",
"c - Dump SNES colour palette",
"W - Show what SNES hardware features the ROM is using",
" which might not be implemented yet",
"w - Show some SNES hardware features used so far in this frame",
"R - Reset SNES",
"q - Quit emulation",
// "ai - Shou APU vectors",
// "a - Show APU status",
// "x - Show Sound DSP status",
// "A - Toggle APU instruction tracing to aputrace.log",
// "B - Toggle sound DSP register tracing to aputrace.log",
// "C - Dump sound sample addresses",
// "ad [Address] - Dump APU RAM from PC or [Address]",
"",
"[Address] - $Bank:Address or $Address",
" [for example: $01:8123]",
"[Number] - #Number",
" [for example: #1]",
"z - ",
"f - ",
"dump - ",
"",
NULL
};
static const char *S9xMnemonics[256] =
{
"BRK", "ORA", "COP", "ORA", "TSB", "ORA", "ASL", "ORA",
"PHP", "ORA", "ASL", "PHD", "TSB", "ORA", "ASL", "ORA",
"BPL", "ORA", "ORA", "ORA", "TRB", "ORA", "ASL", "ORA",
"CLC", "ORA", "INC", "TCS", "TRB", "ORA", "ASL", "ORA",
"JSR", "AND", "JSL", "AND", "BIT", "AND", "ROL", "AND",
"PLP", "AND", "ROL", "PLD", "BIT", "AND", "ROL", "AND",
"BMI", "AND", "AND", "AND", "BIT", "AND", "ROL", "AND",
"SEC", "AND", "DEC", "TSC", "BIT", "AND", "ROL", "AND",
"RTI", "EOR", "WDM", "EOR", "MVP", "EOR", "LSR", "EOR",
"PHA", "EOR", "LSR", "PHK", "JMP", "EOR", "LSR", "EOR",
"BVC", "EOR", "EOR", "EOR", "MVN", "EOR", "LSR", "EOR",
"CLI", "EOR", "PHY", "TCD", "JMP", "EOR", "LSR", "EOR",
"RTS", "ADC", "PER", "ADC", "STZ", "ADC", "ROR", "ADC",
"PLA", "ADC", "ROR", "RTL", "JMP", "ADC", "ROR", "ADC",
"BVS", "ADC", "ADC", "ADC", "STZ", "ADC", "ROR", "ADC",
"SEI", "ADC", "PLY", "TDC", "JMP", "ADC", "ROR", "ADC",
"BRA", "STA", "BRL", "STA", "STY", "STA", "STX", "STA",
"DEY", "BIT", "TXA", "PHB", "STY", "STA", "STX", "STA",
"BCC", "STA", "STA", "STA", "STY", "STA", "STX", "STA",
"TYA", "STA", "TXS", "TXY", "STZ", "STA", "STZ", "STA",
"LDY", "LDA", "LDX", "LDA", "LDY", "LDA", "LDX", "LDA",
"TAY", "LDA", "TAX", "PLB", "LDY", "LDA", "LDX", "LDA",
"BCS", "LDA", "LDA", "LDA", "LDY", "LDA", "LDX", "LDA",
"CLV", "LDA", "TSX", "TYX", "LDY", "LDA", "LDX", "LDA",
"CPY", "CMP", "REP", "CMP", "CPY", "CMP", "DEC", "CMP",
"INY", "CMP", "DEX", "WAI", "CPY", "CMP", "DEC", "CMP",
"BNE", "CMP", "CMP", "CMP", "PEI", "CMP", "DEC", "CMP",
"CLD", "CMP", "PHX", "STP", "JML", "CMP", "DEC", "CMP",
"CPX", "SBC", "SEP", "SBC", "CPX", "SBC", "INC", "SBC",
"INX", "SBC", "NOP", "XBA", "CPX", "SBC", "INC", "SBC",
"BEQ", "SBC", "SBC", "SBC", "PEA", "SBC", "INC", "SBC",
"SED", "SBC", "PLX", "XCE", "JSR", "SBC", "INC", "SBC"
};
static int AddrModes[256] =
{
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
3, 10, 3, 19, 6, 6, 6, 12, 0, 1, 24, 0, 14, 14, 14, 17, // 0
4, 11, 9, 20, 6, 7, 7, 13, 0, 16, 24, 0, 14, 15, 15, 18, // 1
14, 10, 17, 19, 6, 6, 6, 12, 0, 1, 24, 0, 14, 14, 14, 17, // 2
4, 11, 9, 20, 7, 7, 7, 13, 0, 16, 24, 0, 15, 15, 15, 18, // 3
0, 10, 3, 19, 25, 6, 6, 12, 0, 1, 24, 0, 14, 14, 14, 17, // 4
4, 11, 9, 20, 25, 7, 7, 13, 0, 16, 0, 0, 17, 15, 15, 18, // 5
0, 10, 5, 19, 6, 6, 6, 12, 0, 1, 24, 0, 21, 14, 14, 17, // 6
4, 11, 9, 20, 7, 7, 7, 13, 0, 16, 0, 0, 23, 15, 15, 18, // 7
4, 10, 5, 19, 6, 6, 6, 12, 0, 1, 0, 0, 14, 14, 14, 17, // 8
4, 11, 9, 20, 7, 7, 8, 13, 0, 16, 0, 0, 14, 15, 15, 18, // 9
2, 10, 2, 19, 6, 6, 6, 12, 0, 1, 0, 0, 14, 14, 14, 17, // A
4, 11, 9, 20, 7, 7, 8, 13, 0, 16, 0, 0, 15, 15, 16, 18, // B
2, 10, 3, 19, 6, 6, 6, 12, 0, 1, 0, 0, 14, 14, 14, 17, // C
4, 11, 9, 9, 27, 7, 7, 13, 0, 16, 0, 0, 22, 15, 15, 18, // D
2, 10, 3, 19, 6, 6, 6, 12, 0, 1, 0, 0, 14, 14, 14, 17, // E
4, 11, 9, 20, 26, 7, 7, 13, 0, 16, 0, 0, 23, 15, 15, 18 // F
};
static uint8 S9xDebugGetByte (uint32);
static uint16 S9xDebugGetWord (uint32);
static uint8 S9xDebugSA1GetByte (uint32);
static uint16 S9xDebugSA1GetWord (uint32);
static uint8 debug_cpu_op_print (char *, uint8, uint16);
static uint8 debug_sa1_op_print (char *, uint8, uint16);
static void debug_line_print (const char *);
static int debug_get_number (char *, uint16 *);
static short debug_get_start_address (char *, uint8 *, uint32 *);
static void debug_process_command (char *);
static void debug_print_window (uint8 *);
static const char * debug_clip_fn (int);
static void debug_whats_used (void);
static void debug_whats_missing (void);
static uint8 S9xDebugGetByte (uint32 Address)
{
int block = (Address & 0xffffff) >> MEMMAP_SHIFT;
uint8 *GetAddress = Memory.Map[block];
uint8 byte = 0;
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
{
byte = *(GetAddress + (Address & 0xffff));
return (byte);
}
switch ((pint) GetAddress)
{
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_SA1RAM:
byte = *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask));
return (byte);
case CMemory::MAP_LOROM_SRAM_B:
byte = *(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB));
return (byte);
case CMemory::MAP_HIROM_SRAM:
case CMemory::MAP_RONLY_SRAM:
byte = *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask));
return (byte);
case CMemory::MAP_BWRAM:
byte = *(Memory.BWRAM + ((Address & 0x7fff) - 0x6000));
return (byte);
default:
return (byte);
}
}
static uint16 S9xDebugGetWord (uint32 Address)
{
uint16 word;
word = S9xDebugGetByte(Address);
word |= S9xDebugGetByte(Address + 1) << 8;
return (word);
}
static uint8 S9xDebugSA1GetByte (uint32 Address)
{
int block = (Address & 0xffffff) >> MEMMAP_SHIFT;
uint8 *GetAddress = SA1.Map[block];
uint8 byte = 0;
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
{
byte = *(GetAddress + (Address & 0xffff));
return (byte);
}
switch ((pint) GetAddress)
{
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_SA1RAM:
byte = *(Memory.SRAM + (Address & 0xffff));
return (byte);
case CMemory::MAP_BWRAM:
byte = *(SA1.BWRAM + ((Address & 0x7fff) - 0x6000));
return (byte);
case CMemory::MAP_BWRAM_BITMAP:
Address -= 0x600000;
if (SA1.VirtualBitmapFormat == 2)
byte = (Memory.SRAM[(Address >> 2) & 0xffff] >> ((Address & 3) << 1)) & 3;
else
byte = (Memory.SRAM[(Address >> 1) & 0xffff] >> ((Address & 1) << 2)) & 15;
return (byte);
case CMemory::MAP_BWRAM_BITMAP2:
Address = (Address & 0xffff) - 0x6000;
if (SA1.VirtualBitmapFormat == 2)
byte = (SA1.BWRAM[(Address >> 2) & 0xffff] >> ((Address & 3) << 1)) & 3;
else
byte = (SA1.BWRAM[(Address >> 1) & 0xffff] >> ((Address & 1) << 2)) & 15;
return (byte);
default:
return (byte);
}
}
static uint16 S9xDebugSA1GetWord (uint32 Address)
{
uint16 word;
word = S9xDebugSA1GetByte(Address);
word |= S9xDebugSA1GetByte(Address + 1) << 8;
return (word);
}
static uint8 debug_cpu_op_print (char *Line, uint8 Bank, uint16 Address)
{
uint8 S9xOpcode;
uint8 Operant[3];
uint16 Word;
uint8 Byte;
int16 SWord;
int8 SByte;
uint8 Size = 0;
S9xOpcode = S9xDebugGetByte((Bank << 16) + Address);
sprintf(Line, "$%02X:%04X %02X ", Bank, Address, S9xOpcode);
Operant[0] = S9xDebugGetByte((Bank << 16) + Address + 1);
Operant[1] = S9xDebugGetByte((Bank << 16) + Address + 2);
Operant[2] = S9xDebugGetByte((Bank << 16) + Address + 3);
switch (AddrModes[S9xOpcode])
{
case 0:
// Implied
sprintf(Line, "%s %s",
Line,
S9xMnemonics[S9xOpcode]);
Size = 1;
break;
case 1:
// Immediate[MemoryFlag]
if (!CheckFlag(MemoryFlag))
{
// Accumulator 16 - Bit
sprintf(Line, "%s%02X %02X %s #$%02X%02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Size = 3;
}
else
{
// Accumulator 8 - Bit
sprintf(Line, "%s%02X %s #$%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Size = 2;
}
break;
case 2:
// Immediate[IndexFlag]
if (!CheckFlag(IndexFlag))
{
// X / Y 16 - Bit
sprintf(Line, "%s%02X %02X %s #$%02X%02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Size = 3;
}
else
{
// X / Y 8 - Bit
sprintf(Line, "%s%02X %s #$%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Size = 2;
}
break;
case 3:
// Immediate[Always 8 - Bit]
sprintf(Line, "%s%02X %s #$%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Size = 2;
break;
case 4:
// Relative
sprintf(Line, "%s%02X %s $%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
SByte = Operant[0];
Word = Address;
Word += SByte;
Word += 2;
sprintf(Line, "%-32s[$%04X]", Line, Word);
Size = 2;
break;
case 5:
// Relative Long
sprintf(Line, "%s%02X %02X %s $%02X%02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
SWord = (Operant[1] << 8) | Operant[0];
Word = Address;
Word += SWord;
Word += 3;
sprintf(Line, "%-32s[$%04X]", Line, Word);
Size = 3;
break;
case 6:
// Direct
sprintf(Line, "%s%02X %s $%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += Registers.D.W;
sprintf(Line, "%-32s[$00:%04X]", Line, Word);
Size = 2;
break;
case 7:
// Direct Indexed (with X)
sprintf(Line, "%s%02X %s $%02X,x",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += Registers.D.W;
Word += Registers.X.W;
sprintf(Line, "%-32s[$00:%04X]", Line, Word);
Size = 2;
break;
case 8:
// Direct Indexed (with Y)
sprintf(Line, "%s%02X %s $%02X,y",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += Registers.D.W;
Word += Registers.Y.W;
sprintf(Line, "%-32s[$00:%04X]", Line, Word);
Size = 2;
break;
case 9:
// Direct Indirect
sprintf(Line, "%s%02X %s ($%02X)",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += Registers.D.W;
Word = S9xDebugGetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word);
Size = 2;
break;
case 10:
// Direct Indexed Indirect
sprintf(Line, "%s%02X %s ($%02X,x)",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += Registers.D.W;
Word += Registers.X.W;
Word = S9xDebugGetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word);
Size = 2;
break;
case 11:
// Direct Indirect Indexed
sprintf(Line, "%s%02X %s ($%02X),y",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += Registers.D.W;
Word = S9xDebugGetWord(Word);
Word += Registers.Y.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word);
Size = 2;
break;
case 12:
// Direct Indirect Long
sprintf(Line, "%s%02X %s [$%02X]",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += Registers.D.W;
Byte = S9xDebugGetByte(Word + 2);
Word = S9xDebugGetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word);
Size = 2;
break;
case 13:
// Direct Indirect Indexed Long
sprintf(Line, "%s%02X %s [$%02X],y",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += Registers.D.W;
Byte = S9xDebugGetByte(Word + 2);
Word = S9xDebugGetWord(Word);
Word += Registers.Y.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word);
Size = 2;
break;
case 14:
// Absolute
sprintf(Line, "%s%02X %02X %s $%02X%02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word);
Size = 3;
break;
case 15:
// Absolute Indexed (with X)
sprintf(Line, "%s%02X %02X %s $%02X%02X,x",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word += Registers.X.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word);
Size = 3;
break;
case 16:
// Absolute Indexed (with Y)
sprintf(Line, "%s%02X %02X %s $%02X%02X,y",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word += Registers.Y.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word);
Size = 3;
break;
case 17:
// Absolute Long
sprintf(Line, "%s%02X %02X %02X %s $%02X%02X%02X",
Line,
Operant[0],
Operant[1],
Operant[2],
S9xMnemonics[S9xOpcode],
Operant[2],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
sprintf(Line, "%-32s[$%02X:%04X]", Line, Operant[2], Word);
Size = 4;
break;
case 18:
// Absolute Indexed Long
sprintf(Line, "%s%02X %02X %02X %s $%02X%02X%02X,x",
Line,
Operant[0],
Operant[1],
Operant[2],
S9xMnemonics[S9xOpcode],
Operant[2],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word += Registers.X.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, Operant[2], Word);
Size = 4;
break;
case 19:
// Stack Relative
sprintf(Line, "%s%02X %s $%02X,s",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Registers.S.W;
Word += Operant[0];
sprintf(Line, "%-32s[$00:%04X]", Line, Word);
Size = 2;
break;
case 20:
// Stack Relative Indirect Indexed
sprintf(Line, "%s%02X %s ($%02X,s),y",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Registers.S.W;
Word += Operant[0];
Word = S9xDebugGetWord(Word);
Word += Registers.Y.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.DB, Word);
Size = 2;
break;
case 21:
// Absolute Indirect
sprintf(Line, "%s%02X %02X %s ($%02X%02X)",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word = S9xDebugGetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.PB, Word);
Size = 3;
break;
case 22:
// Absolute Indirect Long
sprintf(Line, "%s%02X %02X %s [$%02X%02X]",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Byte = S9xDebugGetByte(Word + 2);
Word = S9xDebugGetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word);
Size = 3;
break;
case 23:
// Absolute Indexed Indirect
sprintf(Line, "%s%02X %02X %s ($%02X%02X,x)",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word += Registers.X.W;
Word = S9xDebugGetWord(ICPU.ShiftedPB + Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, Registers.PB, Word);
Size = 3;
break;
case 24:
// Implied Accumulator
sprintf(Line, "%s %s A",
Line,
S9xMnemonics[S9xOpcode]);
Size = 1;
break;
case 25:
// MVN/MVP SRC DST
sprintf(Line, "%s%02X %02X %s %02X %02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Size = 3;
break;
case 26:
// PEA
sprintf(Line, "%s%02X %02X %s $%02X%02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Size = 3;
break;
case 27:
// PEI Direct Indirect
sprintf(Line, "%s%02X %s ($%02X)",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += Registers.D.W;
Word = S9xDebugGetWord(Word);
sprintf(Line, "%-32s[$%04X]", Line, Word);
Size = 2;
break;
}
sprintf(Line, "%-44s A:%04X X:%04X Y:%04X D:%04X DB:%02X S:%04X P:%c%c%c%c%c%c%c%c%c HC:%04ld VC:%03ld FC:%02d %03x",
Line, Registers.A.W, Registers.X.W, Registers.Y.W,
Registers.D.W, Registers.DB, Registers.S.W,
CheckEmulation() ? 'E' : 'e',
CheckNegative() ? 'N' : 'n',
CheckOverflow() ? 'V' : 'v',
CheckMemory() ? 'M' : 'm',
CheckIndex() ? 'X' : 'x',
CheckDecimal() ? 'D' : 'd',
CheckIRQ() ? 'I' : 'i',
CheckZero() ? 'Z' : 'z',
CheckCarry() ? 'C' : 'c',
(long) CPU.Cycles,
(long) CPU.V_Counter,
IPPU.FrameCount,
(CPU.IRQExternal ? 0x100 : 0) | (PPU.HTimerEnabled ? 0x10 : 0) | (PPU.VTimerEnabled ? 0x01 : 0));
return (Size);
}
static uint8 debug_sa1_op_print (char *Line, uint8 Bank, uint16 Address)
{
uint8 S9xOpcode;
uint8 Operant[3];
uint16 Word;
uint8 Byte;
int16 SWord;
int8 SByte;
uint8 Size = 0;
S9xOpcode = S9xDebugSA1GetByte((Bank << 16) + Address);
sprintf(Line, "$%02X:%04X %02X ", Bank, Address, S9xOpcode);
Operant[0] = S9xDebugSA1GetByte((Bank << 16) + Address + 1);
Operant[1] = S9xDebugSA1GetByte((Bank << 16) + Address + 2);
Operant[2] = S9xDebugSA1GetByte((Bank << 16) + Address + 3);
switch (AddrModes[S9xOpcode])
{
case 0:
// Implied
sprintf(Line, "%s %s",
Line,
S9xMnemonics[S9xOpcode]);
Size = 1;
break;
case 1:
// Immediate[MemoryFlag]
if (!SA1CheckFlag(MemoryFlag))
{
// Accumulator 16 - Bit
sprintf(Line, "%s%02X %02X %s #$%02X%02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Size = 3;
}
else
{
// Accumulator 8 - Bit
sprintf(Line, "%s%02X %s #$%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Size = 2;
}
break;
case 2:
// Immediate[IndexFlag]
if (!SA1CheckFlag(IndexFlag))
{
// X / Y 16 - Bit
sprintf(Line, "%s%02X %02X %s #$%02X%02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Size = 3;
}
else
{
// X / Y 8 - Bit
sprintf(Line, "%s%02X %s #$%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Size = 2;
}
break;
case 3:
// Immediate[Always 8 - Bit]
sprintf(Line, "%s%02X %s #$%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Size = 2;
break;
case 4:
// Relative
sprintf(Line, "%s%02X %s $%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
SByte = Operant[0];
Word = Address;
Word += SByte;
Word += 2;
sprintf(Line, "%-32s[$%04X]", Line, Word);
Size = 2;
break;
case 5:
// Relative Long
sprintf(Line, "%s%02X %02X %s $%02X%02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
SWord = (Operant[1] << 8) | Operant[0];
Word = Address;
Word += SWord;
Word += 3;
sprintf(Line, "%-32s[$%04X]", Line, Word);
Size = 3;
break;
case 6:
// Direct
sprintf(Line, "%s%02X %s $%02X",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += SA1Registers.D.W;
sprintf(Line, "%-32s[$00:%04X]", Line, Word);
Size = 2;
break;
case 7:
// Direct Indexed (with X)
sprintf(Line, "%s%02X %s $%02X,x",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += SA1Registers.D.W;
Word += SA1Registers.X.W;
sprintf(Line, "%-32s[$00:%04X]", Line, Word);
Size = 2;
break;
case 8:
// Direct Indexed (with Y)
sprintf(Line, "%s%02X %s $%02X,y",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += SA1Registers.D.W;
Word += SA1Registers.Y.W;
sprintf(Line, "%-32s[$00:%04X]", Line, Word);
Size = 2;
break;
case 9:
// Direct Indirect
sprintf(Line, "%s%02X %s ($%02X)",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += SA1Registers.D.W;
Word = S9xDebugSA1GetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word);
Size = 2;
break;
case 10:
// Direct Indexed Indirect
sprintf(Line, "%s%02X %s ($%02X,x)",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += SA1Registers.D.W;
Word += SA1Registers.X.W;
Word = S9xDebugSA1GetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word);
Size = 2;
break;
case 11:
// Direct Indirect Indexed
sprintf(Line, "%s%02X %s ($%02X),y",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += SA1Registers.D.W;
Word = S9xDebugSA1GetWord(Word);
Word += SA1Registers.Y.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word);
Size = 2;
break;
case 12:
// Direct Indirect Long
sprintf(Line, "%s%02X %s [$%02X]",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += SA1Registers.D.W;
Byte = S9xDebugSA1GetByte(Word + 2);
Word = S9xDebugSA1GetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word);
Size = 2;
break;
case 13:
// Direct Indirect Indexed Long
sprintf(Line, "%s%02X %s [$%02X],y",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = Operant[0];
Word += SA1Registers.D.W;
Byte = S9xDebugSA1GetByte(Word + 2);
Word = S9xDebugSA1GetWord(Word);
Word += SA1Registers.Y.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word);
Size = 2;
break;
case 14:
// Absolute
sprintf(Line, "%s%02X %02X %s $%02X%02X",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word);
Size = 3;
break;
case 15:
// Absolute Indexed (with X)
sprintf(Line, "%s%02X %02X %s $%02X%02X,x",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word += SA1Registers.X.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word);
Size = 3;
break;
case 16:
// Absolute Indexed (with Y)
sprintf(Line, "%s%02X %02X %s $%02X%02X,y",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word += SA1Registers.Y.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word);
Size = 3;
break;
case 17:
// Absolute Long
sprintf(Line, "%s%02X %02X %02X %s $%02X%02X%02X",
Line,
Operant[0],
Operant[1],
Operant[2],
S9xMnemonics[S9xOpcode],
Operant[2],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
sprintf(Line, "%-32s[$%02X:%04X]", Line, Operant[2], Word);
Size = 4;
break;
case 18:
// Absolute Indexed Long
sprintf(Line, "%s%02X %02X %02X %s $%02X%02X%02X,x",
Line,
Operant[0],
Operant[1],
Operant[2],
S9xMnemonics[S9xOpcode],
Operant[2],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word += SA1Registers.X.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, Operant[2], Word);
Size = 4;
break;
case 19:
// Stack Relative
sprintf(Line, "%s%02X %s $%02X,s",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = SA1Registers.S.W;
Word += Operant[0];
sprintf(Line, "%-32s[$00:%04X]", Line, Word);
Size = 2;
break;
case 20:
// Stack Relative Indirect Indexed
sprintf(Line, "%s%02X %s ($%02X,s),y",
Line,
Operant[0],
S9xMnemonics[S9xOpcode],
Operant[0]);
Word = SA1Registers.S.W;
Word += Operant[0];
Word = S9xDebugSA1GetWord(Word);
Word += SA1Registers.Y.W;
sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.DB, Word);
Size = 2;
break;
case 21:
// Absolute Indirect
sprintf(Line, "%s%02X %02X %s ($%02X%02X)",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word = S9xDebugSA1GetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.PB, Word);
Size = 3;
break;
case 22:
// Absolute Indirect Long
sprintf(Line, "%s%02X %02X %s [$%02X%02X]",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Byte = S9xDebugSA1GetByte(Word + 2);
Word = S9xDebugSA1GetWord(Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, Byte, Word);
Size = 3;
break;
case 23:
// Absolute Indexed Indirect
sprintf(Line, "%s%02X %02X %s ($%02X%02X,x)",
Line,
Operant[0],
Operant[1],
S9xMnemonics[S9xOpcode],
Operant[1],
Operant[0]);
Word = (Operant[1] << 8) | Operant[0];
Word += SA1Registers.X.W;
Word = S9xDebugSA1GetWord(SA1.ShiftedPB + Word);
sprintf(Line, "%-32s[$%02X:%04X]", Line, SA1Registers.PB, Word);
Size = 3;
break;
case 24:
// Implied Accumulator
sprintf(Line, "%s %s A",
Line,
S9xMnemonics[S9xOpcode]);
Size = 1;
break;
case 25:
// MVN/MVP SRC DST
sprintf(Line, "%s %s %02X %02X",
Line,
S9xMnemonics[S9xOpcode],
Operant[0],
Operant[1]);
Size = 3;
break;
}
sprintf(Line, "%-44s A:%04X X:%04X Y:%04X D:%04X DB:%02X S:%04X P:%c%c%c%c%c%c%c%c%c HC:%04ld VC:%03ld FC:%02d",
Line, SA1Registers.A.W, SA1Registers.X.W, SA1Registers.Y.W,
SA1Registers.D.W, SA1Registers.DB, SA1Registers.S.W,
SA1CheckEmulation() ? 'E' : 'e',
SA1CheckNegative() ? 'N' : 'n',
SA1CheckOverflow() ? 'V' : 'v',
SA1CheckMemory() ? 'M' : 'm',
SA1CheckIndex() ? 'X' : 'x',
SA1CheckDecimal() ? 'D' : 'd',
SA1CheckIRQ() ? 'I' : 'i',
SA1CheckZero() ? 'Z' : 'z',
SA1CheckCarry() ? 'C' : 'c',
(long) CPU.Cycles,
(long) CPU.V_Counter,
IPPU.FrameCount);
return (Size);
}
static void debug_line_print (const char *Line)
{
printf("%s\n", Line);
}
static int debug_get_number (char *Line, uint16 *Number)
{
int i;
if (sscanf(Line, " #%d", &i) == 1)
{
*Number = i;
return (1);
}
return (-1);
}
static short debug_get_start_address (char *Line, uint8 *Bank, uint32 *Address)
{
uint32 a, b;
if (sscanf(Line + 1, " $%x:%x", &b, &a) != 2)
return (-1);
*Bank = b;
*Address = a;
return (1);
}
static void debug_process_command (char *Line)
{
uint8 Bank = Registers.PB;
uint32 Address = Registers.PCw;
uint16 Hold = 0;
uint16 Number;
short ErrorCode;
char string[512];
if (strncasecmp(Line, "dump", 4) == 0)
{
int Count;
if (sscanf(&Line[4], "%x %d", &Address, &Count) == 2)
{
FILE *fs;
sprintf(string, "%06x%05d.sd2", Address, Count);
fs = fopen(string, "wb");
if (fs)
{
for (int i = 0; i < Count; i++)
putc(S9xDebugGetByte(Address + i), fs);
fclose(fs);
}
else
printf("Can't open %s for writing\n", string);
}
else
printf("Usage: dump start_address_in_hex count_in_decimal\n");
return;
}
if (*Line == 'i')
{
printf("Vectors:\n");
sprintf(string, " 8 Bit 16 Bit ");
debug_line_print(string);
sprintf(string, "ABT $00:%04X|$00:%04X", S9xDebugGetWord(0xFFF8), S9xDebugGetWord(0xFFE8));
debug_line_print(string);
sprintf(string, "BRK $00:%04X|$00:%04X", S9xDebugGetWord(0xFFFE), S9xDebugGetWord(0xFFE6));
debug_line_print(string);
sprintf(string, "COP $00:%04X|$00:%04X", S9xDebugGetWord(0xFFF4), S9xDebugGetWord(0xFFE4));
debug_line_print(string);
sprintf(string, "IRQ $00:%04X|$00:%04X", S9xDebugGetWord(0xFFFE), S9xDebugGetWord(0xFFEE));
debug_line_print(string);
sprintf(string, "NMI $00:%04X|$00:%04X", S9xDebugGetWord(0xFFFA), S9xDebugGetWord(0xFFEA));
debug_line_print(string);
sprintf(string, "RES $00:%04X", S9xDebugGetWord(0xFFFC));
debug_line_print(string);
}
/*
if (strncmp(Line, "ai", 2) == 0)
{
printf("APU vectors:");
for (int i = 0; i < 0x40; i += 2)
{
if (i % 16 == 0)
printf("\n%04x ", 0xffc0 + i);
printf("%04x ", APU.ExtraRAM[i]);
}
printf("\n");
}
*/
if (*Line == 's')
{
Registers.PCw += debug_cpu_op_print(string, Bank, Address);
Bank = Registers.PB;
Address = Registers.PCw;
*Line = 'r';
}
if (*Line == 'z')
{
uint16 *p = (uint16 *) &Memory.VRAM[PPU.BG[2].SCBase << 1];
for (int l = 0; l < 32; l++)
{
for (int c = 0; c < 32; c++, p++)
printf("%04x,", *p++);
printf("\n");
}
}
if (*Line == 'c')
{
printf("Colours:\n");
for (int i = 0; i < 256; i++)
printf("%02x%02x%02x ", PPU.CGDATA[i] & 0x1f, (PPU.CGDATA[i] >> 5) & 0x1f, (PPU.CGDATA[i] >> 10) & 0x1f);
printf("\n");
}
if (*Line == 'S')
{
int SmallWidth, LargeWidth, SmallHeight, LargeHeight;
switch ((Memory.FillRAM[0x2101] >> 5) & 7)
{
case 0:
SmallWidth = SmallHeight = 8;
LargeWidth = LargeHeight = 16;
break;
case 1:
SmallWidth = SmallHeight = 8;
LargeWidth = LargeHeight = 32;
break;
case 2:
SmallWidth = SmallHeight = 8;
LargeWidth = LargeHeight = 64;
break;
case 3:
SmallWidth = SmallHeight = 16;
LargeWidth = LargeHeight = 32;
break;
case 4:
SmallWidth = SmallHeight = 16;
LargeWidth = LargeHeight = 64;
break;
default:
case 5:
SmallWidth = SmallHeight = 32;
LargeWidth = LargeHeight = 64;
break;
case 6:
SmallWidth = 16;
SmallHeight = 32;
LargeWidth = 32;
LargeHeight = 64;
break;
case 7:
SmallWidth = 16;
SmallHeight = 32;
LargeWidth = LargeHeight = 32;
break;
}
printf("Sprites: Small: %dx%d, Large: %dx%d, OAMAddr: 0x%04x, OBJNameBase: 0x%04x, OBJNameSelect: 0x%04x, First: %d\n",
SmallWidth, SmallHeight, LargeWidth, LargeHeight, PPU.OAMAddr, PPU.OBJNameBase, PPU.OBJNameSelect, PPU.FirstSprite);
for (int i = 0; i < 128; i++)
{
printf("X:%3d Y:%3d %c%c%d%c ",
PPU.OBJ[i].HPos,
PPU.OBJ[i].VPos,
PPU.OBJ[i].VFlip ? 'V' : 'v',
PPU.OBJ[i].HFlip ? 'H' : 'h',
PPU.OBJ[i].Priority,
PPU.OBJ[i].Size ? 'S' : 's');
if (i % 4 == 3)
printf("\n");
}
}
if (*Line == 'T')
{
if (Line[1] == 'S')
{
SA1.Flags ^= TRACE_FLAG;
if (SA1.Flags & TRACE_FLAG)
{
printf("SA1 CPU instruction tracing enabled.\n");
ENSURE_TRACE_OPEN(trace2, "trace_sa1.log", "wb")
}
else
{
printf("SA1 CPU instruction tracing disabled.\n");
fclose(trace2);
trace2 = NULL;
}
}
else
{
CPU.Flags ^= TRACE_FLAG;
if (CPU.Flags & TRACE_FLAG)
{
printf("CPU instruction tracing enabled.\n");
ENSURE_TRACE_OPEN(trace, "trace.log", "wb")
}
else
{
printf("CPU instruction tracing disabled.\n");
fclose(trace);
trace = NULL;
}
}
}
if (*Line == 'E')
{
Settings.TraceHCEvent = !Settings.TraceHCEvent;
printf("HC event tracing %s.\n", Settings.TraceHCEvent ? "enabled" : "disabled");
}
/*
if (*Line == 'A')
{
APU.Flags ^= TRACE_FLAG;
if (APU.Flags & TRACE_FLAG)
{
printf("APU tracing enabled.\n");
if (apu_trace == NULL)
apu_trace = fopen("aputrace.log", "wb");
}
else
{
printf("APU tracing disabled.\n");
fclose(apu_trace);
apu_trace = NULL;
}
}
if (*Line == 'B')
{
Settings.TraceSoundDSP = !Settings.TraceSoundDSP;
printf("Sound DSP register tracing %s.\n", Settings.TraceSoundDSP ? "enabled" : "disabled");
}
if (*Line == 'x')
S9xPrintSoundDSPState();
if (*Line == 'C')
{
printf("SPC700 sample addresses at 0x%04x:\n", APU.DSP[APU_DIR] << 8);
for (int i = 0; i < 256; i++)
{
uint8 *dir = IAPU.RAM + (((APU.DSP[APU_DIR] << 8) + i * 4) & 0xffff);
int addr = *dir + (*(dir + 1) << 8);
int addr2 = *(dir + 2) + (*(dir + 3) << 8);
printf("%04X %04X;", addr, addr2);
if (i % 8 == 7)
printf("\n");
}
}
*/
if (*Line == 'R')
{
S9xReset();
printf("SNES reset.\n");
CPU.Flags |= DEBUG_MODE_FLAG;
}
/*
if (strncmp(Line, "ad", 2) == 0)
{
uint32 Count = 16;
Address = 0;
if (sscanf(Line + 2, "%x,%x", &Address, &Count) != 2)
{
if (sscanf(Line + 2, "%x", &Address) == 1)
Count = 16;
}
printf("APU RAM dump:\n");
for (uint32 l = 0; l < Count; l += 16)
{
printf("%04X ", Address);
for (int i = 0; i < 16; i++)
printf("%02X ", IAPU.RAM[Address++]);
printf("\n");
}
*Line = 0;
}
if (*Line == 'a')
{
printf("APU in-ports : %02X %02X %02X %02X\n", IAPU.RAM[0xF4], IAPU.RAM[0xF5], IAPU.RAM[0xF6], IAPU.RAM[0xF7]);
printf("APU out-ports: %02X %02X %02X %02X\n", APU.OutPorts[0], APU.OutPorts[1], APU.OutPorts[2], APU.OutPorts[3]);
printf("ROM/RAM switch: %s\n", (IAPU.RAM[0xf1] & 0x80) ? "ROM" : "RAM");
for (int i = 0; i < 3; i++)
if (APU.TimerEnabled[i])
printf("Timer%d enabled, Value: 0x%03X, 4-bit: 0x%02X, Target: 0x%03X\n",
i, APU.Timer[i], IAPU.RAM[0xfd + i], APU.TimerTarget[i]);
}
if (*Line == 'P')
{
Settings.TraceDSP = !Settings.TraceDSP;
printf("DSP tracing %s.\n", Settings.TraceDSP ? "enabled" : "disabled");
}
*/
if (*Line == 'p')
{
S9xBreakpoint[5].Enabled = FALSE;
Address += debug_cpu_op_print(string, Bank, Address);
if (strncmp(&string[18], "JMP", 3) != 0 &&
strncmp(&string[18], "JML", 3) != 0 &&
strncmp(&string[18], "RT" , 2) != 0 &&
strncmp(&string[18], "BRA", 3))
{
S9xBreakpoint[5].Enabled = TRUE;
S9xBreakpoint[5].Bank = Bank;
S9xBreakpoint[5].Address = Address;
}
else
{
CPU.Flags |= SINGLE_STEP_FLAG;
CPU.Flags &= ~DEBUG_MODE_FLAG;
}
}
if (*Line == 'b')
{
if (Line[1] == 's')
{
debug_get_number(Line + 2, &Hold);
if (Hold > 4)
Hold = 0;
if (Hold < 5)
{
if (debug_get_start_address(Line + 5, &Bank, &Address) == -1)
S9xBreakpoint[Hold].Enabled = FALSE;
else
{
S9xBreakpoint[Hold].Enabled = TRUE;
S9xBreakpoint[Hold].Bank = Bank;
S9xBreakpoint[Hold].Address = Address;
CPU.Flags |= BREAK_FLAG;
}
}
Line[1] = 'v';
}
if (Line[1] == 'v')
{
Number = 0;
if (debug_get_number(Line + 2, &Number) == -1 && Number < 5)
{
debug_line_print("Breakpoints:");
for (Number = 0; Number != 5; Number++)
{
if (S9xBreakpoint[Number].Enabled)
sprintf(string, "%i @ $%02X:%04X", Number, S9xBreakpoint[Number].Bank, S9xBreakpoint[Number].Address);
else
sprintf(string, "%i @ Disabled", Number);
debug_line_print(string);
}
}
else
{
debug_line_print("Breakpoint:");
if (S9xBreakpoint[Number].Enabled)
sprintf(string, "%i @ $%02X:%04X", Number, S9xBreakpoint[Number].Bank, S9xBreakpoint[Number].Address);
else
sprintf(string, "%i @ Disabled", Number);
debug_line_print(string);
}
}
}
if (*Line == '?' || strcasecmp(Line, "help") == 0)
{
for (int i = 0; HelpMessage[i] != NULL; i++)
debug_line_print(HelpMessage[i]);
}
if (*Line == 't')
{
CPU.Flags |= SINGLE_STEP_FLAG;
CPU.Flags &= ~DEBUG_MODE_FLAG;
}
if (*Line == 'f')
{
CPU.Flags |= FRAME_ADVANCE_FLAG;
CPU.Flags &= ~DEBUG_MODE_FLAG;
IPPU.RenderThisFrame = TRUE;
IPPU.FrameSkip = 0;
if (sscanf(&Line[1], "%u", &ICPU.FrameAdvanceCount) != 1)
ICPU.Frame = 0;
}
if (*Line == 'g')
{
S9xBreakpoint[5].Enabled = FALSE;
bool8 found = FALSE;
for (int i = 0; i < 5; i++)
{
if (S9xBreakpoint[i].Enabled)
{
found = TRUE;
if (S9xBreakpoint[i].Bank == Registers.PB && S9xBreakpoint[i].Address == Registers.PCw)
{
S9xBreakpoint[i].Enabled = 2;
break;
}
}
}
if (!found)
CPU.Flags &= ~BREAK_FLAG;
ErrorCode = debug_get_start_address(Line, &Bank, &Address);
if (ErrorCode == 1)
{
S9xBreakpoint[5].Enabled = TRUE;
S9xBreakpoint[5].Bank = Bank;
S9xBreakpoint[5].Address = Address;
CPU.Flags |= BREAK_FLAG;
}
CPU.Flags &= ~DEBUG_MODE_FLAG;
}
if (*Line == 'D')
{
Settings.TraceDMA = !Settings.TraceDMA;
printf("DMA tracing %s.\n", Settings.TraceDMA ? "enabled" : "disabled");
}
if (*Line == 'V')
{
Settings.TraceVRAM = !Settings.TraceVRAM;
printf("Non-DMA VRAM write tracing %s.\n", Settings.TraceVRAM ? "enabled" : "disabled");
}
if (*Line == 'H')
{
Settings.TraceHDMA = !Settings.TraceHDMA;
printf("HDMA tracing %s.\n", Settings.TraceHDMA ? "enabled" : "disabled");
}
if (*Line == 'U')
{
Settings.TraceUnknownRegisters = !Settings.TraceUnknownRegisters;
printf("Unknown registers read/write tracing %s.\n", Settings.TraceUnknownRegisters ? "enabled" : "disabled");
}
if (*Line == 'd')
{
int CLine;
int CByte;
uint8 MemoryByte;
if (Debug.Dump.Bank != 0 || Debug.Dump.Address != 0)
{
Bank = Debug.Dump.Bank;
Address = Debug.Dump.Address;
}
ErrorCode = debug_get_start_address(Line, &Bank, &Address);
for (CLine = 0; CLine != 10; CLine++)
{
sprintf(string, "$%02X:%04X", Bank, Address);
for (CByte = 0; CByte != 16; CByte++)
{
if (Address + CByte == 0x2140 ||
Address + CByte == 0x2141 ||
Address + CByte == 0x2142 ||
Address + CByte == 0x2143 ||
Address + CByte == 0x4210)
MemoryByte = 0;
else
MemoryByte = S9xDebugGetByte((Bank << 16) + Address + CByte);
sprintf(string, "%s %02X", string, MemoryByte);
}
sprintf(string, "%s-", string);
for (CByte = 0; CByte != 16; CByte++)
{
if (Address + CByte == 0x2140 ||
Address + CByte == 0x2141 ||
Address + CByte == 0x2142 ||
Address + CByte == 0x2143 ||
Address + CByte == 0x4210)
MemoryByte = 0;
else
MemoryByte = S9xDebugGetByte((Bank << 16) + Address + CByte);
if (MemoryByte < 32 || MemoryByte >= 127)
MemoryByte = '?';
sprintf(string, "%s%c", string, MemoryByte);
}
Address += 16;
debug_line_print(string);
}
Debug.Dump.Bank = Bank;
Debug.Dump.Address = Address;
}
if (*Line == 'q')
S9xExit();
if (*Line == 'W')
debug_whats_missing();
if (*Line == 'w')
debug_whats_used();
if (*Line == 'r')
{
debug_cpu_op_print(string, Bank, Address);
debug_line_print(string);
}
if (*Line == 'u')
{
if (Debug.Unassemble.Bank != 0 || Debug.Unassemble.Address != 0)
{
Bank = Debug.Unassemble.Bank;
Address = Debug.Unassemble.Address;
}
ErrorCode = debug_get_start_address(Line, &Bank, &Address);
for (int i = 0; i != 10; i++)
{
Address += debug_cpu_op_print(string, Bank, Address);
debug_line_print(string);
}
Debug.Unassemble.Bank = Bank;
Debug.Unassemble.Address = Address;
}
debug_line_print("");
return;
}
static void debug_print_window (uint8 *window)
{
for (int i = 0; i < 6; i++)
{
if (window[i])
{
switch (i)
{
case 0:
printf("Background 0, ");
break;
case 1:
printf("Background 1, ");
break;
case 2:
printf("Background 2, ");
break;
case 3:
printf("Background 3, ");
break;
case 4:
printf("Objects, ");
break;
case 5:
printf("Color window, ");
break;
}
}
}
}
static const char * debug_clip_fn (int logic)
{
switch (logic)
{
case CLIP_OR:
return ("OR");
case CLIP_AND:
return ("AND");
case CLIP_XOR:
return ("XOR");
case CLIP_XNOR:
return ("XNOR");
default:
return ("???");
}
}
static void debug_whats_used (void)
{
printf("V-line: %ld, H-Pos: %ld, \n", (long) CPU.V_Counter, (long) CPU.Cycles);
printf("Screen mode: %d, ", PPU.BGMode);
if (PPU.BGMode <= 1 && (Memory.FillRAM[0x2105] & 8))
printf("(BG#2 Priority), ");
printf("Brightness: %d, ", PPU.Brightness);
if (Memory.FillRAM[0x2100] & 0x80)
printf("(screen blanked), ");
printf("\n");
if (Memory.FillRAM[0x2133] & 1)
printf("Interlace, ");
if (Memory.FillRAM[0x2133] & 4)
printf("240 line visible, ");
if (Memory.FillRAM[0x2133] & 8)
printf("Pseudo 512 pixels horizontal resolution, ");
if (Memory.FillRAM[0x2133] & 0x40)
printf("Mode 7 priority per pixel, ");
printf("\n");
if (PPU.BGMode == 7 && (Memory.FillRAM[0x211a] & 3))
printf("Mode 7 flipping, ");
if (PPU.BGMode == 7)
printf("Mode 7 screen repeat: %d, ", (Memory.FillRAM[0x211a] & 0xc0) >> 6);
if (Memory.FillRAM[0x2130] & 1)
printf("32K colour mode, ");
printf("\n");
if (PPU.BGMode == 7)
{
// Sign extend 13 bit values to 16 bit values...
if (PPU.CentreX & (1 << 12))
PPU.CentreX |= 0xe000;
if (PPU.CentreY & (1 << 12))
PPU.CentreY |= 0xe000;
printf("Matrix A: %.3f, B: %.3f, C: %.3f, D: %.3f, Centre X: %d Y:%d, \n",
(double) PPU.MatrixA / 256, (double) PPU.MatrixB / 256,
(double) PPU.MatrixC / 256, (double) PPU.MatrixD / 256,
PPU.CentreX, PPU.CentreY);
}
if ((Memory.FillRAM[0x2106] & 0xf0) && (Memory.FillRAM[0x2106] & 0x0f))
{
printf("Mosaic effect(%d) on, ", PPU.Mosaic);
for (int i = 0; i < 4; i++)
if (Memory.FillRAM[0x2106] & (1 << i))
printf("BG%d, ", i);
}
printf("\n");
if (PPU.HVBeamCounterLatched)
printf("V and H beam pos latched, \n");
if (Memory.FillRAM[0x4200] & 0x20)
printf("V-IRQ enabled at %d, \n", PPU.IRQVBeamPos);
if (Memory.FillRAM[0x4200] & 0x10)
printf("H-IRQ enabled at %d, \n", PPU.IRQHBeamPos);
if (Memory.FillRAM[0x4200] & 0x80)
printf("V-blank NMI enabled, \n");
for (int i = 0; i < 8; i++)
{
if (missing.hdma_this_frame & (1 << i))
{
printf("H-DMA %d [%d] 0x%02X%04X->0x21%02X %s %s 0x%02X%04X %s addressing, \n",
i, DMA[i].TransferMode, DMA[i].ABank, DMA[i].AAddress, DMA[i].BAddress,
DMA[i].AAddressDecrement ? "dec" : "inc",
DMA[i].Repeat ? "repeat" : "continue",
DMA[i].IndirectBank, DMA[i].IndirectAddress,
DMA[i].HDMAIndirectAddressing ? "indirect" : "absolute");
}
}
for (int i = 0; i < 8; i++)
{
if (missing.dma_this_frame & (1 << i))
{
printf("DMA %d [%d] 0x%02X%04X->0x21%02X Num: %d %s, \n",
i, DMA[i].TransferMode, DMA[i].ABank, DMA[i].AAddress, DMA[i].BAddress, DMA[i].TransferBytes,
DMA[i].AAddressFixed ? "fixed" : (DMA[i].AAddressDecrement ? "dec" : "inc"));
}
}
printf("VRAM write address: 0x%04x(%s), Full Graphic: %d, Address inc: %d, \n",
PPU.VMA.Address,
PPU.VMA.High ? "Byte" : "Word",
PPU.VMA.FullGraphicCount, PPU.VMA.Increment);
for (int i = 0; i < 4; i++)
{
printf("BG%d: VOffset:%d, HOffset:%d, W:%d, H:%d, TS:%d, BA:0x%04x, TA:0x%04X, \n",
i, PPU.BG[i].VOffset, PPU.BG[i].HOffset,
(PPU.BG[i].SCSize & 1) * 32 + 32,
(PPU.BG[i].SCSize & 2) * 16 + 32,
PPU.BG[i].BGSize * 8 + 8,
PPU.BG[i].SCBase,
PPU.BG[i].NameBase);
}
const char *s = "";
switch ((Memory.FillRAM[0x2130] & 0xc0) >> 6)
{
case 0:
s = "always on";
break;
case 1:
s = "inside";
break;
case 2:
s = "outside";
break;
case 3:
s = "always off";
break;
}
printf("Main screen (%s): ", s);
for (int i = 0; i < 5; i++)
{
if (Memory.FillRAM[0x212c] & (1 << i))
{
switch (i)
{
case 0:
printf("BG0, ");
break;
case 1:
printf("BG1, ");
break;
case 2:
printf("BG2, ");
break;
case 3:
printf("BG3, ");
break;
case 4:
printf("OBJ, ");
break;
}
}
}
printf("\n");
switch ((Memory.FillRAM[0x2130] & 0x30) >> 4)
{
case 0:
s = "always on";
break;
case 1:
s = "inside";
break;
case 2:
s = "outside";
break;
case 3:
s = "always off";
break;
}
printf("Subscreen (%s): ", s);
for (int i = 0; i < 5; i++)
{
if (Memory.FillRAM[0x212d] & (1 << i))
{
switch (i)
{
case 0:
printf("BG0, ");
break;
case 1:
printf("BG1, ");
break;
case 2:
printf("BG2, ");
break;
case 3:
printf("BG3, ");
break;
case 4:
printf("OBJ, ");
break;
}
}
}
printf("\n");
if ((Memory.FillRAM[0x2131] & 0x3f))
{
if (Memory.FillRAM[0x2131] & 0x80)
{
if (Memory.FillRAM[0x2130] & 0x02)
printf("Subscreen subtract");
else
printf("Fixed colour subtract");
}
else
{
if (Memory.FillRAM[0x2130] & 0x02)
printf("Subscreen addition");
else
printf("Fixed colour addition");
}
if (Memory.FillRAM[0x2131] & 0x40)
printf("(half): ");
else
printf(": ");
for (int i = 0; i < 6; i++)
{
if (Memory.FillRAM[0x2131] & (1 << i))
{
switch (i)
{
case 0:
printf("BG0, ");
break;
case 1:
printf("BG1, ");
break;
case 2:
printf("BG2, ");
break;
case 3:
printf("BG3, ");
break;
case 4:
printf("OBJ, ");
break;
case 5:
printf("BACK, ");
break;
}
}
}
printf("\n");
}
printf("Window 1 (%d, %d, %02x, %02x): ", PPU.Window1Left, PPU.Window1Right, Memory.FillRAM[0x212e], Memory.FillRAM[0x212f]);
for (int i = 0; i < 6; i++)
{
if (PPU.ClipWindow1Enable[i])
{
switch (i)
{
case 0:
printf("BG0(%s-%s), ", PPU.ClipWindow1Inside[0] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[0]));
break;
case 1:
printf("BG1(%s-%s), ", PPU.ClipWindow1Inside[1] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[1]));
break;
case 2:
printf("BG2(%s-%s), ", PPU.ClipWindow1Inside[2] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[2]));
break;
case 3:
printf("BG3(%s-%s), ", PPU.ClipWindow1Inside[3] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[3]));
break;
case 4:
printf("OBJ(%s-%s), ", PPU.ClipWindow1Inside[4] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[4]));
break;
case 5:
printf("COL(%s-%s), ", PPU.ClipWindow1Inside[5] ? "I" : "O", debug_clip_fn(PPU.ClipWindowOverlapLogic[5]));
break;
}
}
}
printf("\n");
printf("Window 2 (%d, %d): ", PPU.Window2Left, PPU.Window2Right);
for (int i = 0; i < 6; i++)
{
if (PPU.ClipWindow2Enable[i])
{
switch (i)
{
case 0:
printf("BG0(%s), ", PPU.ClipWindow2Inside[0] ? "I" : "O");
break;
case 1:
printf("BG1(%s), ", PPU.ClipWindow2Inside[1] ? "I" : "O");
break;
case 2:
printf("BG2(%s), ", PPU.ClipWindow2Inside[2] ? "I" : "O");
break;
case 3:
printf("BG3(%s), ", PPU.ClipWindow2Inside[3] ? "I" : "O");
break;
case 4:
printf("OBJ(%s), ", PPU.ClipWindow2Inside[4] ? "I" : "O");
break;
case 5:
printf("COL(%s), " , PPU.ClipWindow2Inside[5] ? "I" : "O");
break;
}
}
}
printf("\n");
printf("Fixed colour: %02x%02x%02x, \n", PPU.FixedColourRed, PPU.FixedColourGreen, PPU.FixedColourBlue);
}
static void debug_whats_missing (void)
{
printf("Processor: ");
if (missing.emulate6502)
printf("emulation mode, ");
if (missing.decimal_mode)
printf("decimal mode, ");
if (missing.mv_8bit_index)
printf("MVP/MVN with 8bit index registers and XH or YH > 0, ");
if (missing.mv_8bit_acc)
printf("MVP/MVN with 8bit accumulator > 255, ");
printf("\n");
printf("Screen modes used: ");
for (int i = 0; i < 8; i++)
if (missing.modes[i])
printf("%d, ", i);
printf("\n");
if (missing.interlace)
printf("Interlace, ");
if (missing.pseudo_512)
printf("Pseudo 512 pixels horizontal resolution, ");
if (missing.lines_239)
printf("240 lines visible, ");
if (missing.sprite_double_height)
printf("double-hight sprites, ");
printf("\n");
if (missing.mode7_fx)
printf("Mode 7 rotation/scaling, ");
if (missing.matrix_read)
printf("Mode 7 read matrix registers, ");
if (missing.mode7_flip)
printf("Mode 7 flipping, ");
if (missing.mode7_bgmode)
printf("Mode 7 priority per pixel, ");
if (missing.direct)
printf("Direct 32000 colour mode, ");
printf("\n");
if (missing.mosaic)
printf("Mosaic effect, ");
if (missing.subscreen)
printf("Subscreen enabled, ");
if (missing.subscreen_add)
printf("Subscreen colour add, ");
if (missing.subscreen_sub)
printf("Subscreen colour subtract, ");
if (missing.fixed_colour_add)
printf("Fixed colour add, ");
if (missing.fixed_colour_sub)
printf("Fixed colour subtract, ");
printf("\n");
printf("Window 1 enabled on: ");
debug_print_window(missing.window1);
printf("\n");
printf("Window 2 enabled on: ");
debug_print_window(missing.window2);
printf("\n");
if (missing.bg_offset_read)
printf("BG offset read, ");
if (missing.oam_address_read)
printf("OAM address read, ");
if (missing.sprite_priority_rotation)
printf("Sprite priority rotation, ");
if (missing.fast_rom)
printf("Fast 3.58MHz ROM access enabled, ");
if (missing.matrix_multiply)
printf("Matrix multiply 16bit by 8bit used, ");
printf("\n");
if (missing.virq)
printf("V-IRQ used at line %d, ", missing.virq_pos);
if (missing.hirq)
printf("H-IRQ used at position %d, ", missing.hirq_pos);
printf("\n");
if (missing.h_v_latch)
printf("H and V-Pos latched, ");
if (missing.h_counter_read)
printf("H-Pos read, ");
if (missing.v_counter_read)
printf("V-Pos read, ");
printf("\n");
if (missing.oam_read)
printf("OAM read, ");
if (missing.vram_read)
printf("VRAM read, ");
if (missing.cgram_read)
printf("CG-RAM read, ");
if (missing.wram_read)
printf("WRAM read, ");
if (missing.dma_read)
printf("DMA read, ");
if (missing.vram_inc)
printf("VRAM inc: %d, ", missing.vram_inc);
if (missing.vram_full_graphic_inc)
printf("VRAM full graphic inc: %d, ", missing.vram_full_graphic_inc);
printf("\n");
for (int i = 0; i < 8; i++)
{
if (missing.hdma[i].used)
{
printf("HDMA %d 0x%02X%04X->0x21%02X %s, ",
i, missing.hdma[i].abus_bank, missing.hdma[i].abus_address, missing.hdma[i].bbus_address,
missing.hdma[i].indirect_address ? "indirect" : "absolute");
if (missing.hdma[i].force_table_address_write)
printf("Forced address write, ");
if (missing.hdma[i].force_table_address_read)
printf("Current address read, ");
if (missing.hdma[i].line_count_write)
printf("Line count write, ");
if (missing.hdma[i].line_count_read)
printf("Line count read, ");
printf("\n");
}
}
for (int i = 0; i < 8; i++)
{
if (missing.dma_channels & (1 << i))
{
printf("DMA %d [%d] 0x%02X%04X->0x21%02X Num: %d %s, \n",
i, DMA[i].TransferMode, DMA[i].ABank, DMA[i].AAddress, DMA[i].BAddress, DMA[i].TransferBytes,
DMA[i].AAddressFixed ? "fixed" : (DMA[i].AAddressDecrement ? "dec" : "inc"));
}
}
if (missing.unknownppu_read)
printf("Read from unknown PPU register: $%04X, \n", missing.unknownppu_read);
if (missing.unknownppu_write)
printf("Write to unknown PPU register: $%04X, \n", missing.unknownppu_write);
if (missing.unknowncpu_read)
printf("Read from unknown CPU register: $%04X, \n", missing.unknowncpu_read);
if (missing.unknowncpu_write)
printf("Write to unknown CPU register: $%04X, \n", missing.unknowncpu_write);
if (missing.unknowndsp_read)
printf("Read from unknown DSP register: $%04X, \n", missing.unknowndsp_read);
if (missing.unknowndsp_write)
printf("Write to unknown DSP register: $%04X, \n", missing.unknowndsp_write);
}
void S9xDoDebug (void)
{
char Line[513];
Debug.Dump.Bank = 0;
Debug.Dump.Address = 0;
Debug.Unassemble.Bank = 0;
Debug.Unassemble.Address = 0;
S9xTextMode();
strcpy(Line, "r");
debug_process_command(Line);
while (CPU.Flags & DEBUG_MODE_FLAG)
{
int32 Cycles;
char *p;
printf("> ");
fflush(stdout);
p = fgets(Line, sizeof(Line) - 1, stdin);
Line[strlen(Line) - 1] = 0;
Cycles = CPU.Cycles;
debug_process_command(Line);
CPU.Cycles = Cycles;
}
if (!(CPU.Flags & SINGLE_STEP_FLAG))
S9xGraphicsMode();
}
void S9xTrace (void)
{
char msg[512];
ENSURE_TRACE_OPEN(trace, "trace.log", "a")
debug_cpu_op_print(msg, Registers.PB, Registers.PCw);
fprintf(trace, "%s\n", msg);
}
void S9xSA1Trace (void)
{
char msg[512];
ENSURE_TRACE_OPEN(trace2, "trace_sa1.log", "a")
debug_sa1_op_print(msg, SA1Registers.PB, SA1Registers.PCw);
fprintf(trace2, "%s\n", msg);
}
void S9xTraceMessage (const char *s)
{
if (s)
{
if (trace)
fprintf(trace, "%s\n", s);
else
if (trace2)
fprintf(trace2, "%s\n", s);
}
}
void S9xTraceFormattedMessage (const char *s, ...)
{
char msg[512];
if (s)
{
va_list argptr;
va_start(argptr, s);
vsprintf(msg, s, argptr);
va_end(argptr);
S9xTraceMessage(msg);
}
}
#endif