mirror of
https://gitee.com/openharmony/communication_ipc
synced 2024-11-27 01:51:13 +00:00
afb0fdfdad
Signed-off-by: chenchong_666 <chenchong57@huawei.com>
772 lines
29 KiB
Markdown
772 lines
29 KiB
Markdown
# IPC/RPC组件<a name="ZH-CN_TOPIC_0000001103602398"></a>
|
||
|
||
- [简介](#section11660541593)
|
||
- [系统架构](#section1950291414611)
|
||
- [目录](#section161941989596)
|
||
- [约束](#section119744591305)
|
||
- [编译构建](#section137768191623)
|
||
- [说明](#section1312121216216)
|
||
- [接口说明](#section1551164914237)
|
||
- [使用说明](#section129654513264)
|
||
|
||
- [相关仓](#section1371113476307)
|
||
|
||
## 简介<a name="section11660541593"></a>
|
||
|
||
IPC(Inter-Process Communication)与RPC(Remote Procedure Call)机制用于实现跨进程通信,不同的是前者使用Binder驱动,用于设备内的跨进程通信,而后者使用软总线驱动,用于跨设备跨进程通信。IPC和RPC通常采用客户端-服务器(Client-Server)模型,服务请求方(Client)可获取提供服务提供方(Server)的代理 (Proxy),并通过此代理读写数据来实现进程间的数据通信。通常,系统能力(System Ability)Server侧会先注册到系统能力管理者(System Ability Manager,缩写SAMgr)中,SAMgr负责管理这些SA并向Client提供相关的接口。Client要和某个具体的SA通信,必须先从SAMgr中获取该SA的代理,然后使用代理和SA通信。三方应用可以使用FA提供的接口绑定服务提供方的Ability,获取代理,进行通信。下文使用Proxy表示服务请求方,Stub表示服务提供方。
|
||
|
||
## 系统架构<a name="section1950291414611"></a>
|
||
|
||
**图 1** IPC通信机制架构图<a name="fig312319321710"></a>
|
||
![](figures/ipc-architecture.png "IPC通信机制架构图")
|
||
|
||
## 目录<a name="section161941989596"></a>
|
||
|
||
```
|
||
/foundation/communication/ipc
|
||
├── interfaces # 对外接口存放目录
|
||
│ └── innerkits # 对内部子系统暴露的头文件存放目录
|
||
│ ├── ipc_core # ipc 接口存放目录
|
||
│ └── libdbinder # dbinder 接口存放目录
|
||
├── ipc # ipc 框架代码
|
||
│ ├── native # ipc native 实现存放目录
|
||
│ ├── src # ipc native 源代码存放目录
|
||
│ └── test # ipc native 单元测试用例存放目录
|
||
│ └── test # ipc native 模块测试用例存放目录
|
||
├── service # dbinder 实现存放目录
|
||
│ └── dbinder # dbinder 源代码存放目录
|
||
```
|
||
|
||
## 约束<a name="section119744591305"></a>
|
||
|
||
1. 单个设备上跨进程通信时,传输的数据量最大约为1MB,过大的数据量请使用匿名共享内存。
|
||
2. 不支持把跨设备的Proxy对象传递回该Proxy对象所指向的Stub对象所在的设备。
|
||
|
||
## 编译构建<a name="section137768191623"></a>
|
||
|
||
**JS侧依赖**
|
||
|
||
```
|
||
import rpc from "@ohos.rpc"
|
||
```
|
||
|
||
**Native侧编译依赖**
|
||
|
||
sdk依赖:
|
||
|
||
```
|
||
external_deps = [
|
||
"ipc:ipc_core",
|
||
]
|
||
```
|
||
|
||
此外, IPC/RPC依赖的refbase实现在公共基础库下,请增加对utils的依赖:
|
||
|
||
```
|
||
external_deps = [
|
||
"c_utils:utils",
|
||
]
|
||
```
|
||
|
||
**Rust侧编译依赖**
|
||
|
||
```
|
||
external_deps = [ "ipc:ipc_rust" ]
|
||
```
|
||
|
||
## 说明<a name="section1312121216216"></a>
|
||
|
||
**JS侧实现跨进程通信基本步骤:**
|
||
|
||
1. 获取代理
|
||
|
||
使用ohos.app.ability.UIAbility提供的globalThis.context.connectServiceExtensionAbility方法绑定Ability,在参数里指定要绑定的Ability所在应用的包名、组件名,如果是跨设备的情况,还需要指定所在设备的NetworkId。用户需要在服务端的onConnect方法里返回一个继承自ohos.rpc.RemoteObject的对象,此对象会在其onRemoteMessageRequest方法里接收到请求。
|
||
|
||
2. 发送请求
|
||
|
||
客户端在globalThis.context.connectServiceExtensionAbility参数指定的回调函数接收到代理对象后,使用ohos.rpc模块提供的方法完成RPC通信,其中MessageParcel提供了读写各种类型数据的方法,IRemoteObject提供了发送请求的方法,RemoteObject提供了处理请求的方法onRemoteRequest,用户需要重写。
|
||
|
||
**Native侧实现跨进程通信的基本步骤:**
|
||
|
||
1. 定义接口类
|
||
|
||
接口类继承IRemoteBroker,定义描述符、业务函数和消息码。
|
||
|
||
2. 实现服务提供端\(Stub\)
|
||
|
||
Stub继承IRemoteStub\(Native\),除了接口类中未实现方法外,还需要实现AsObject方法及OnRemoteRequest方法。
|
||
|
||
3. 实现服务请求端\(Proxy\)
|
||
|
||
Proxy继承IRemoteProxy\(Native\),封装业务函数,调用SendRequest将请求发送到Stub。
|
||
|
||
4. 注册SA
|
||
|
||
服务提供方所在进程启动后,申请SA的唯一标识,将Stub注册到SAMgr。
|
||
|
||
5. 获取SA
|
||
|
||
6. 通过SA的标识和设备NetworkId,从SAMgr获取Proxy,通过Proxy实现与Stub的跨进程通信。
|
||
|
||
**Rust侧实现跨进程通信的基本步骤:**
|
||
|
||
1. 定义接口
|
||
|
||
继承IPC框架的IRemoteBroker特征,定义一个业务自己的trait,在此trait中定义proxy和stub之间的IPC方法。
|
||
|
||
2. 定义服务
|
||
|
||
和c++ 定义的服务类似,Rust服务相关的类型有两个;
|
||
|
||
1)由业务提供名字,通过宏define_remote_object定义。
|
||
|
||
2)由业务定义,框架不关心其内容,只要求其必须实现步骤1中定义的接口trait。
|
||
|
||
3. 定义代理
|
||
|
||
代理的定义由业务提供名字,通过宏define_remote_object定义代理的类型。
|
||
|
||
4. 创建并注册服务
|
||
|
||
服务定义完成后,只有注册到samgr后,其他进程才能获取该服务的代理,完成和该服务的通信。
|
||
|
||
5. 获取代理
|
||
|
||
通过向samgr发起请求,可以获取到指定服务的代理对象,之后便可以调用该代理对象的IPC方法实现和服务的通信。
|
||
|
||
6. 测试服务能力
|
||
|
||
### 接口说明<a name="section1551164914237"></a>
|
||
|
||
**表 1** JS侧IPC关键API
|
||
|
||
| 模块 | 方法 | 功能说明 |
|
||
| -------------------------- | ------------------------------------------------------------ | ------------------------------------------- |
|
||
| ohos.app.ability.UIAbility | globalThis.context.connectServiceExtensionAbility(want: Want, options:ConnectOptions ): number | 绑定指定的Ability,在回调函数里接收代理对象 |
|
||
| ohos.rpc.RemoteObject | onRemoteMessageRequest(code: number, data: MessageParcel, reply: MessageParcel, options: MessageOption): boolean \| Promise<boolean> | 服务端处理请求,返回结果 |
|
||
| ohos.rpc.IRemoteObject | sendRequest(code: number, data: MessageParcel, reply: MessageParcel, options: MessageOption): Promise<SendRequestResult> | 发送请求,在期约里接收结果 |
|
||
| ohos.rpc.IRemoteObject | sendRequest(code: number, data: MessageParcel, reply: MessageParcel, options: MessageOption, callback: AsyncCallback<SendRequestResult>): void | 发送请求,在回调函数里接收结果 |
|
||
| ohos.rpc.MessageParcel | writeRemoteObject(object: IRemoteObject): boolean | 序列化IRemoteObject对象 |
|
||
| ohos.rpc.MessageParcel | readRemoteObject(): IRemoteObject | 反序列化IRemoteObject对象 |
|
||
|
||
|
||
|
||
**表 2** Native侧IPC接口
|
||
|
||
<a name="table178849240013"></a>
|
||
|
||
<table><thead align="left"><tr id="row6884924608"><th class="cellrowborder" valign="top" width="14.12141214121412%" id="mcps1.2.4.1.1"><p id="p98846241706"><a name="p98846241706"></a><a name="p98846241706"></a>类/接口</p>
|
||
</th>
|
||
<th class="cellrowborder" valign="top" width="52.54525452545254%" id="mcps1.2.4.1.2"><p id="p1488482414020"><a name="p1488482414020"></a><a name="p1488482414020"></a>方法</p>
|
||
</th>
|
||
<th class="cellrowborder" valign="top" width="33.33333333333333%" id="mcps1.2.4.1.3"><p id="p388516244016"><a name="p388516244016"></a><a name="p388516244016"></a>功能说明</p>
|
||
</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody><tr id="row15885824402"><td class="cellrowborder" valign="top" width="14.12141214121412%" headers="mcps1.2.4.1.1 "><p id="p08859241008"><a name="p08859241008"></a><a name="p08859241008"></a>IRemoteBroker</p>
|
||
</td>
|
||
<td class="cellrowborder" valign="top" width="52.54525452545254%" headers="mcps1.2.4.1.2 "><p id="p388572412010"><a name="p388572412010"></a><a name="p388572412010"></a>sptr<IRemoteObject> AsObject()</p>
|
||
</td>
|
||
<td class="cellrowborder" valign="top" width="33.33333333333333%" headers="mcps1.2.4.1.3 "><p id="p13885724405"><a name="p13885724405"></a><a name="p13885724405"></a>返回通信对象。派生类需要实现,Stub端返回RemoteObject对象本身,Proxy端返回代理对象。</p>
|
||
</td>
|
||
</tr>
|
||
<tr id="row138859241808"><td class="cellrowborder" valign="top" width="14.12141214121412%" headers="mcps1.2.4.1.1 "><p id="p1888515245012"><a name="p1888515245012"></a><a name="p1888515245012"></a>IRemoteStub</p>
|
||
</td>
|
||
<td class="cellrowborder" valign="top" width="52.54525452545254%" headers="mcps1.2.4.1.2 "><p id="p1388516240011"><a name="p1388516240011"></a><a name="p1388516240011"></a>virtual int OnRemoteRequest(uint32_t code, MessageParcel &data, MessageParcel &reply, MessageOption &option)</p>
|
||
</td>
|
||
<td class="cellrowborder" valign="top" width="33.33333333333333%" headers="mcps1.2.4.1.3 "><p id="p1188582414016"><a name="p1188582414016"></a><a name="p1188582414016"></a>请求处理方法,派生类需要重写,处理Proxy的请求并返回结果。</p>
|
||
</td>
|
||
</tr>
|
||
<tr id="row108856241904"><td class="cellrowborder" valign="top" width="14.12141214121412%" headers="mcps1.2.4.1.1 "><p id="p6885924609"><a name="p6885924609"></a><a name="p6885924609"></a>IRemoteProxy</p>
|
||
</td>
|
||
<td class="cellrowborder" valign="top" width="52.54525452545254%" headers="mcps1.2.4.1.2 "> </td>
|
||
<td class="cellrowborder" valign="top" width="33.33333333333333%" headers="mcps1.2.4.1.3 "><p id="p688592413018"><a name="p688592413018"></a><a name="p688592413018"></a>业务Proxy类派生自IRemoteProxy类。</p>
|
||
</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
|
||
### 使用说明<a name="section129654513264"></a>
|
||
|
||
**JS侧使用说明**
|
||
|
||
1. 客户端构造变量want,指定要绑定的Ability所在应用的包名、组件名,如果是跨设备的场景,还需要目标设备NetworkId。构造变量connect,指定绑定成功、绑定失败、断开连接时的回调函数。使用UIAbility提供的接口绑定Ability。
|
||
|
||
```
|
||
import rpc from "@ohos.rpc"
|
||
|
||
let proxy = null
|
||
let connectId = null
|
||
|
||
// 单个设备
|
||
let want = {
|
||
// 包名和组件名写实际的值
|
||
"bundleName": "ohos.rpc.test.server",
|
||
"abilityName": "ohos.rpc.test.server.ServiceAbility",
|
||
}
|
||
let connect = {
|
||
onConnect:function(elementName, remote) {
|
||
proxy = remote
|
||
},
|
||
onDisconnect:function(elementName) {
|
||
},
|
||
onFailed:function() {
|
||
proxy = null
|
||
}
|
||
}
|
||
connectId = globalThis.context.connectServiceExtensionAbility(want, connect)
|
||
|
||
// 如果是跨设备绑定,可以使用deviceManager获取目标设备NetworkId
|
||
import deviceManager from '@ohos.distributedHardware.deviceManager'
|
||
function deviceManagerCallback(deviceManager) {
|
||
let deviceList = deviceManager.getTrustedDeviceListSync()
|
||
let deviceId = deviceList[0].deviceId
|
||
let want = {
|
||
"bundleName": "ohos.rpc.test.server",
|
||
"abilityName": "ohos.rpc.test.service.ServiceAbility",
|
||
"deviceId": deviceId,
|
||
"flags": 256
|
||
}
|
||
connectId = globalThis.context.connectServiceExtensionAbility(want, connect)
|
||
}
|
||
// 第一个参数是本应用的包名,第二个参数是接收deviceManager的回调函数
|
||
deviceManager.createDeviceManager("ohos.rpc.test", deviceManagerCallback)
|
||
```
|
||
|
||
|
||
|
||
2. 服务端被绑定的Ability在onConnect方法里返回继承自rpc.RemoteObject的对象,该对象需要实现onRemoteMessageRequest方法,处理客户端的请求。
|
||
|
||
```
|
||
import rpc from "@ohos.rpc"
|
||
onConnect(want: Want) {
|
||
var robj:rpc.RemoteObject = new Stub("rpcTestAbility")
|
||
return robj
|
||
}
|
||
class Stub extends rpc.RemoteObject {
|
||
constructor(descriptor) {
|
||
super(descriptor)
|
||
}
|
||
onRemoteMessageRequest(code, data, reply, option) {
|
||
// 根据code处理客户端的请求
|
||
return true
|
||
}
|
||
}
|
||
```
|
||
|
||
|
||
|
||
3. 客户端在onConnect回调里接收到代理对象,调用sendRequest方法发起请求,在期约或者回调函数里接收结果。
|
||
|
||
```
|
||
import rpc from "@ohos.rpc"
|
||
// 使用期约
|
||
let option = new rpc.MessageOption()
|
||
let data = rpc.MessageParcel.create()
|
||
let reply = rpc.MessageParcel.create()
|
||
// 往data里写入参数
|
||
proxy.sendRequest(1, data, reply, option)
|
||
.then(function(result) {
|
||
if (result.errCode != 0) {
|
||
console.error("send request failed, errCode: " + result.errCode)
|
||
return
|
||
}
|
||
// 从result.reply里读取结果
|
||
})
|
||
.catch(function(e) {
|
||
console.error("send request got exception: " + e)
|
||
}
|
||
.finally(() => {
|
||
data.reclaim()
|
||
reply.reclaim()
|
||
})
|
||
|
||
// 使用回调函数
|
||
function sendRequestCallback(result) {
|
||
try {
|
||
if (result.errCode != 0) {
|
||
console.error("send request failed, errCode: " + result.errCode)
|
||
return
|
||
}
|
||
// 从result.reply里读取结果
|
||
} finally {
|
||
result.data.reclaim()
|
||
result.reply.reclaim()
|
||
}
|
||
}
|
||
let option = new rpc.MessageOption()
|
||
let data = rpc.MessageParcel.create()
|
||
let reply = rpc.MessageParcel.create()
|
||
// 往data里写入参数
|
||
proxy.sendRequest(1, data, reply, option, sendRequestCallback)
|
||
```
|
||
|
||
|
||
|
||
4. IPC通信结束后,使用UIAbility的接口断开连接。
|
||
|
||
```
|
||
import rpc from "@ohos.rpc"
|
||
globalThis.context.disconnectServiceExtensionAbility(connectionId).then((data) => {
|
||
console.info('disconnectServiceExtensionAbility success');
|
||
}).catch((error) => {
|
||
console.error('disconnectServiceExtensionAbility failed');
|
||
})
|
||
```
|
||
|
||
|
||
|
||
**Native侧使用说明**
|
||
|
||
1. 定义IPC接口ITestAbility
|
||
|
||
IPC接口继承IPC基类接口IRemoteBroker,接口里定义描述符、业务函数和消息码,其中业务函数在Proxy端和Stub端都需要实现。
|
||
|
||
```
|
||
class ITestAbility : public IRemoteBroker {
|
||
public:
|
||
// DECLARE_INTERFACE_DESCRIPTOR是必须的, 入参需使用std::u16string;
|
||
DECLARE_INTERFACE_DESCRIPTOR(u"test.ITestAbility"); // DESCRIPTOR接口描述符建议使用"组件名.类名"的格式
|
||
int TRANS_ID_PING_ABILITY = 1; // 定义消息码
|
||
virtual int TestPingAbility(const std::u16string &dummy) = 0; // 定义业务函数
|
||
};
|
||
```
|
||
|
||
|
||
|
||
2. 定义和实现服务端TestAbilityStub
|
||
|
||
该类是和IPC框架相关的实现,需要继承自IRemoteStub<ITestAbility\>。Stub端作为接收请求的一端,需重写OnRemoteRequest方法用于接收客户端调用。
|
||
|
||
```
|
||
class TestAbilityStub : public IRemoteStub<ITestAbility> {
|
||
public:
|
||
virtual int OnRemoteRequest(uint32_t code, MessageParcel &data, MessageParcel &reply, MessageOption &option) override;
|
||
int TestPingAbility(const std::u16string &dummy) override;
|
||
};
|
||
|
||
int TestAbilityStub::OnRemoteRequest(uint32_t code,
|
||
MessageParcel &data, MessageParcel &reply, MessageOption &option)
|
||
{
|
||
if (data.ReadInterfaceToken() != GetDescriptor()) { // 校验是否为本服务的接口描述符,避免中继攻击
|
||
return -1;
|
||
}
|
||
switch (code) {
|
||
case TRANS_ID_PING_ABILITY: {
|
||
std::u16string dummy = data.ReadString16();
|
||
int result = TestPingAbility(dummy);
|
||
reply.WriteInt32(result);
|
||
return 0;
|
||
}
|
||
default:
|
||
return IPCObjectStub::OnRemoteRequest(code, data, reply, option);
|
||
}
|
||
}
|
||
```
|
||
|
||
|
||
|
||
3. 定义服务端业务函数具体实现类TestAbility
|
||
|
||
```
|
||
class TestAbility : public TestAbilityStub {
|
||
public:
|
||
int TestPingAbility(const std::u16string &dummy);
|
||
}
|
||
|
||
int TestAbility::TestPingAbility(const std::u16string &dummy) {
|
||
return 0;
|
||
}
|
||
```
|
||
|
||
|
||
|
||
4. 定义和实现客户端TestAbilityProxy
|
||
|
||
该类是Proxy端实现,继承自IRemoteProxy<ITestAbility\>,调用SendRequest接口向Stub端发送请求,对外暴露服务端提供的能力。
|
||
|
||
```
|
||
class TestAbilityProxy : public IRemoteProxy<ITestAbility> {
|
||
public:
|
||
explicit TestAbilityProxy(const sptr<IRemoteObject> &impl);
|
||
int TestPingService(const std::u16string &dummy) override;
|
||
private:
|
||
static inline BrokerDelegator<TestAbilityProxy> delegator_; // 方便使用iface_cast宏
|
||
}
|
||
|
||
TestAbilityProxy::TestAbilityProxy(const sptr<IRemoteObject> &impl)
|
||
: IRemoteProxy<ITestAbility>(impl)
|
||
{
|
||
}
|
||
|
||
int TestAbilityProxy::TestPingService(const std::u16string &dummy) {
|
||
MessageOption option;
|
||
MessageParcel dataParcel, replyParcel;
|
||
if(!dataParcel.WriteInterfaceToken(GetDescriptor())) { // 所有对外接口的proxy实现都要写入接口描述符,用于stub端检验
|
||
return -1;
|
||
}
|
||
if(!dataParcel.WriteString16(dummy)) {
|
||
return -1;
|
||
}
|
||
int error = Remote()->SendRequest(TRANS_ID_PING_ABILITY, dataParcel, replyParcel, option);
|
||
int result = (error == ERR_NONE) ? replyParcel.ReadInt32() : -1;
|
||
return result;
|
||
}
|
||
```
|
||
|
||
|
||
|
||
5. 同步调用与异步调用
|
||
|
||
MessageOption作为发送接口(原型如下)的入参,可设定同步(TF\_SYNC)、异步(TF\_ASYNC),默认情况下设定为同步,其余可通过MessageOption构造方法或void SetFlags\(int flags\)设定。
|
||
|
||
```
|
||
int SendRequest(uint32_t code, MessageParcel &data,
|
||
MessageParcel &reply, MessageOption &option) override;
|
||
MessageOption option;
|
||
option.setFlags(option.TF_ASYNC);
|
||
```
|
||
|
||
|
||
|
||
6. SA注册与启动
|
||
|
||
SA需要将自己的TestAbilityStub实例通过AddSystemAbility接口注册到SystemAbilityManager,设备内与分布式的注册参数不同。
|
||
|
||
```
|
||
// 注册到本设备内
|
||
auto samgr = SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
|
||
samgr->AddSystemAbility(said, new TestAbility());
|
||
|
||
// 在组网场景下,会被同步到其他设备上
|
||
auto samgr = SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
|
||
ISystemAbilityManager::SAExtraProp saExtra;
|
||
saExtra.isDistributed = true; // 设置为分布式SA
|
||
int result = samgr->AddSystemAbility(said, new TestAbility(), saExtra);
|
||
```
|
||
|
||
|
||
|
||
7. SA获取与调用
|
||
|
||
通过SystemAbilityManager的GetSystemAbility方法可获取到对应SA的代理IRemoteObject,然后构造TestAbilityProxy即可。
|
||
|
||
```
|
||
// 获取本设备内注册的SA的proxy
|
||
sptr<ISystemAbilityManager> samgr = SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
|
||
sptr<IRemoteObject> remoteObject = samgr->GetSystemAbility(said);
|
||
sptr<ITestAbility> testAbility = iface_cast<ITestAbility>(remoteObject); // 使用iface_cast宏转换成具体类型
|
||
|
||
// 获取其他设备注册的SA的Proxy
|
||
sptr<ISystemAbilityManager> samgr = SystemAbilityManagerClient::GetInstance().GetSystemAbilityManager();
|
||
sptr<IRemoteObject> remoteObject = samgr->GetSystemAbility(sdid, deviceId); // deviceId是指定设备的标识符
|
||
sptr<TestAbilityProxy> proxy(new TestAbilityProxy(remoteObject)); // 直接构造具体Proxy
|
||
```
|
||
|
||
**Rust侧使用说明**
|
||
|
||
以下为CALCULATOR服务的完整开发步骤。
|
||
|
||
1. 定义接口
|
||
|
||
继承IPC框架IRemoteBroker特征,定义一个业务自己的trait,该trait中定义proxy和stub之间的IPC方法。示例如下定义了ICalc trait:
|
||
|
||
```
|
||
/// Function between proxy and stub of ICalcService
|
||
pub trait ICalc: IRemoteBroker {
|
||
/// Calc add num1 + num2
|
||
fn add(&self, num1: i32, num2: i32) -> IpcResult<i32>;
|
||
/// Calc sub num1 + num2
|
||
fn sub(&self, num1: i32, num2: i32) -> IpcResult<i32>;
|
||
/// Calc mul num1 + num2
|
||
fn mul(&self, num1: i32, num2: i32) -> IpcResult<i32>;
|
||
/// Calc div num1 + num2
|
||
fn div(&self, num1: i32, num2: i32) -> IpcResult<i32>;
|
||
}
|
||
```
|
||
|
||
1.1 定义枚举ICalcCode
|
||
|
||
ICalcCode枚举中的变体表示calculator服务的不同功能。当然这一步不是必须的,但是为了提高代码的可读性,建议按照如下方法为每一个IPC方法定义code,示例如下:
|
||
|
||
```
|
||
/// Function code of ICalcService
|
||
pub enum ICalcCode {
|
||
/// add
|
||
CodeAdd = FIRST_CALL_TRANSACTION, // 由IPC框架定义,值为1,建议业务使用该值作为第一个IPC方法的code
|
||
/// sub
|
||
CodeSub,
|
||
/// mul
|
||
CodeMul,
|
||
/// div
|
||
CodeDiv,
|
||
}
|
||
```
|
||
|
||
1.2 ICalCode转换
|
||
|
||
ICalCode实现TryFrom trait,可以实现u32类型到CalCode枚举类型的转换。
|
||
|
||
```
|
||
impl TryFrom<u32> for ICalcCode {
|
||
type Error = IpcStatusCode;
|
||
fn try_from(code: u32) -> IpcResult<Self> {
|
||
match code {
|
||
_ if code == ICalcCode::CodeAdd as u32 => Ok(ICalcCode::CodeAdd),
|
||
_ if code == ICalcCode::CodeSub as u32 => Ok(ICalcCode::CodeSub),
|
||
_ if code == ICalcCode::CodeMul as u32 => Ok(ICalcCode::CodeMul),
|
||
_ if code == ICalcCode::CodeDiv as u32 => Ok(ICalcCode::CodeDiv),
|
||
_ => Err(IpcStatusCode::Failed),
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
2. 定义服务
|
||
|
||
和c++ 定义的服务类似,Rust服务相关的类型有两个:
|
||
|
||
1)由业务提供名字,通过宏define_remote_object!定义,如本例中的CalcStub。
|
||
|
||
2)由业务定义,框架不关心其内容,只要求其必须实现步骤1中定义的接口trait,如本例中的CalcService。
|
||
|
||
2.1 定义CalcService服务
|
||
|
||
CalcService的定义如下所示,实现了ICalc和IRemoteBroker特征,服务中没有任何成员,如有需要可以根据业务需要进行定义。
|
||
|
||
```
|
||
/// example.calc.ipc.ICalcService type
|
||
pub struct CalcService;
|
||
// 实现ICalc特征
|
||
impl ICalc for CalcService {
|
||
fn add(&self, num1: i32, num2: i32) -> IpcResult<i32> {
|
||
Ok(add(&num1, &num2))
|
||
}
|
||
fn sub(&self, num1: i32, num2: i32) -> IpcResult<i32> {
|
||
Ok(sub(&num1, &num2))
|
||
}
|
||
fn mul(&self, num1: i32, num2: i32) -> IpcResult<i32> {
|
||
Ok(mul(&num1, &num2))
|
||
}
|
||
fn div(&self, num1: i32, num2: i32) -> IpcResult<i32> {
|
||
Ok(div(&num1, &num2))
|
||
}
|
||
}
|
||
// 实现IRemoteBroker特征
|
||
impl IRemoteBroker for CalcService {}
|
||
/// add num1 + num2
|
||
pub fn add(num1: &i32, num2: &i32) -> i32 {
|
||
num1 + num2
|
||
}
|
||
/// sub num1 + num2
|
||
pub fn sub(num1: &i32, num2: &i32) -> i32 {
|
||
num1 - num2
|
||
}
|
||
/// mul num1 + num2
|
||
pub fn mul(num1: &i32, num2: &i32) -> i32 {
|
||
num1 * num2
|
||
}
|
||
/// div num1 + num2
|
||
pub fn div(num1: &i32, num2: &i32) -> i32 {
|
||
match num2 {
|
||
0 => {
|
||
println!("Zero cannot be divided");
|
||
-1
|
||
},
|
||
_ => num1 / num2,
|
||
}
|
||
}
|
||
```
|
||
|
||
2.2 实现on_icalc_remote_request()方法
|
||
|
||
当服务收到IPC请求,IPC框架会回调该方法,业务在该方法中完成如下处理:
|
||
|
||
1)完成参数的解析。
|
||
|
||
2)调用具体的服务IPC方法。
|
||
|
||
3)将处理结果写会reply。
|
||
|
||
示例代码如下:
|
||
|
||
```
|
||
fn on_icalc_remote_request(stub: &dyn ICalc, code: u32, data: &BorrowedMsgParcel,
|
||
reply: &mut BorrowedMsgParcel) -> IpcResult<()> {
|
||
match code.try_into()? {
|
||
ICalcCode::CodeAdd => {
|
||
let num1: i32 = data.read().expect("Failed to read num1 in addition operation");
|
||
let num2: i32 = data.read().expect("Failed to read num2 in addition operation");
|
||
let ret = stub.add(num1, num2)?;
|
||
reply.write(&ret)?;
|
||
Ok(())
|
||
}
|
||
ICalcCode::CodeSub => {
|
||
let num1: i32 = data.read().expect("Failed to read num1 in subtraction operation");
|
||
let num2: i32 = data.read().expect("Failed to read num1 in subtraction operation");
|
||
let ret = stub.sub(num1, num2)?;
|
||
reply.write(&ret)?;
|
||
Ok(())
|
||
}
|
||
ICalcCode::CodeMul => {
|
||
let num1: i32 = data.read().expect("Failed to read num1 in multiplication operation");
|
||
let num2: i32 = data.read().expect("Failed to read num1 in multiplication operation");
|
||
let ret = stub.mul(num1, num2)?;
|
||
reply.write(&ret)?;
|
||
Ok(())
|
||
}
|
||
ICalcCode::CodeDiv => {
|
||
let num1: i32 = data.read().expect("Failed to read num1 in division operation");
|
||
let num2: i32 = data.read().expect("Failed to read num1 in division operation");
|
||
let ret = stub.div(num1, num2)?;
|
||
reply.write(&ret)?;
|
||
Ok(())
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
3. 定义代理
|
||
|
||
代理的定义由业务提供名字,通过宏define_remote_object定义代理的类型,业务需要为代理实现ICalc。示例如下:
|
||
|
||
```
|
||
impl ICalc for CalcProxy {
|
||
fn add(&self, num1: i32, num2: i32) -> IpcResult<i32> {
|
||
let mut data = MsgParcel::new().expect("MsgParcel should success");
|
||
data.write(&num1)?;
|
||
data.write(&num2)?;
|
||
let reply = self.remote.send_request(ICalcCode::CodeAdd as u32,
|
||
&data, false)?;
|
||
let ret: i32 = reply.read().expect("need reply i32");
|
||
Ok(ret)
|
||
}
|
||
fn sub(&self, num1: i32, num2: i32) -> IpcResult<i32> {
|
||
let mut data = MsgParcel::new().expect("MsgParcel should success");
|
||
data.write(&num1)?;
|
||
data.write(&num2)?;
|
||
let reply = self.remote.send_request(ICalcCode::CodeSub as u32,
|
||
&data, false)?;
|
||
let ret: i32 = reply.read().expect("need reply i32");
|
||
Ok(ret)
|
||
}
|
||
fn mul(&self, num1: i32, num2: i32) -> IpcResult<i32> {
|
||
let mut data = MsgParcel::new().expect("MsgParcel should success");
|
||
data.write(&num1)?;
|
||
data.write(&num2)?;
|
||
let reply = self.remote.send_request(ICalcCode::CodeMul as u32,
|
||
&data, false)?;
|
||
let ret: i32 = reply.read().expect("need reply i32");
|
||
Ok(ret)
|
||
}
|
||
fn div(&self, num1: i32, num2: i32) -> IpcResult<i32> {
|
||
let mut data = MsgParcel::new().expect("MsgParcel should success");
|
||
data.write(&num1)?;
|
||
data.write(&num2)?;
|
||
let reply = self.remote.send_request(ICalcCode::CodeDiv as u32,
|
||
&data, false)?;
|
||
let ret: i32 = reply.read().expect("need reply i32");
|
||
Ok(ret)
|
||
}
|
||
}
|
||
```
|
||
|
||
上述对象最终通过宏define_remote_object调用,将业务定义的类型和IPC框架进行结合,宏define_remote_object提供了如下几个关键信息:
|
||
|
||
1)服务的接口特征ICalc。
|
||
|
||
2)服务的描述符为“example.calc.ipc.ICalcService”。
|
||
|
||
3)Rust服务类型名为CalcStub。
|
||
|
||
4)服务处理IPC请求的入口方法为on_icalc_remote_request。
|
||
|
||
5)代理类型为CalcProxy。
|
||
|
||
示例代码如下:
|
||
|
||
```
|
||
define_remote_object!(
|
||
ICalc["example.calc.ipc.ICalcService"] {
|
||
stub: CalcStub(on_icalc_remote_request),
|
||
proxy: CalcProxy,
|
||
}
|
||
);
|
||
```
|
||
|
||
4. 创建并注册服务
|
||
|
||
服务定义完成后,只有注册到samgr后,其他进程才能获取该服务的代理,然后完成和该服务的通信。示例代码如下:
|
||
|
||
```
|
||
fn main() {
|
||
init_access_token();
|
||
// 创建服务对象,最终的服务对象为CalcStub
|
||
let service = CalcStub::new_remote_stub(CalcService).expect("create CalcService success");
|
||
// 向samgr注册服务
|
||
add_service(&service.as_object().expect("get ICalc service failed"),
|
||
EXAMPLE_IPC_CALC_SERVICE_ID).expect("add server to samgr failed");
|
||
println!("join to ipc work thread");
|
||
// 将主线程转换为IPC线程,至此服务所在进程陷入循环
|
||
join_work_thread();
|
||
}
|
||
```
|
||
|
||
注意:add_service为IPC 框架提供的临时调试接口,该接口应该由samgr模块提供。
|
||
|
||
5. 获取代理
|
||
|
||
通过向samgr发起请求,可以获取到指定服务的代理对象,之后便可以调用该代理对象的IPC方法实现和服务的通信。示例代码如下:
|
||
|
||
```
|
||
fn get_calc_service() -> RemoteObjRef<dyn ICalc>
|
||
{
|
||
let object = get_service(EXAMPLE_IPC_CALC_SERVICE_ID).expect("get icalc service failed");
|
||
let remote = <dyn ICalc as FromRemoteObj>::try_from(object);
|
||
let remote = match remote {
|
||
Ok(x) => x,
|
||
Err(error) => {
|
||
println!("convert RemoteObj to CalcProxy failed: {}", error);
|
||
panic!();
|
||
}
|
||
};
|
||
remote
|
||
}
|
||
```
|
||
|
||
注意:示例中的get_service()为IPC框架提供的临时接口,该接口由samgr模块提供。
|
||
|
||
6. 测试Calculartor服务能力
|
||
|
||
当测试用例Calculator_Ability pass表示CalcService 服务能力ok。
|
||
|
||
```
|
||
#[test]
|
||
fn calculator_ability() {
|
||
let remote = get_calc_service();
|
||
// add
|
||
let ret = remote.add(5, 5).expect("add failed");
|
||
assert_eq!(ret, 10);
|
||
// sub
|
||
let ret = remote.sub(5, 5).expect("sub failed");
|
||
assert_eq!(ret, 0);
|
||
// mul
|
||
let ret = remote.mul(5, 5).expect("mul failed");
|
||
assert_eq!(ret, 25);
|
||
// div
|
||
let ret = remote.div(5, 5).expect("div failed");
|
||
assert_eq!(ret, 1);
|
||
}
|
||
```
|
||
|
||
## 相关仓<a name="section1371113476307"></a>
|
||
|
||
分布式软总线子系统
|
||
|
||
**communication\_ipc**
|
||
|
||
[commonlibrary\_c\_utils](https://gitee.com/openharmony/commonlibrary_c_utils)
|
||
|
||
[distributedschedule\_samgr](https://gitee.com/openharmony/distributedschedule_samgr)
|
||
|