wine/dlls/wined3d/drawprim.c
2012-12-03 12:37:49 +01:00

1193 lines
47 KiB
C

/*
* WINED3D draw functions
*
* Copyright 2002-2004 Jason Edmeades
* Copyright 2002-2004 Raphael Junqueira
* Copyright 2004 Christian Costa
* Copyright 2005 Oliver Stieber
* Copyright 2006, 2008 Henri Verbeet
* Copyright 2007-2008 Stefan Dösinger for CodeWeavers
* Copyright 2009 Henri Verbeet for CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#include "wine/port.h"
#include "wined3d_private.h"
WINE_DEFAULT_DEBUG_CHANNEL(d3d_draw);
#include <stdio.h>
#include <math.h>
/* GL locking is done by the caller */
static void drawStridedFast(const struct wined3d_gl_info *gl_info, GLenum primitive_type, UINT count, UINT idx_size,
const void *idx_data, UINT start_idx, INT base_vertex_index, UINT start_instance, UINT instance_count)
{
if (idx_size)
{
GLenum idxtype = idx_size == 2 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT;
if (instance_count)
{
if (!gl_info->supported[ARB_DRAW_INSTANCED])
{
FIXME("Instanced drawing not supported.\n");
}
else
{
if (start_instance)
FIXME("Start instance (%u) not supported.\n", start_instance);
GL_EXTCALL(glDrawElementsInstancedBaseVertex(primitive_type, count, idxtype,
(const char *)idx_data + (idx_size * start_idx), instance_count, base_vertex_index));
checkGLcall("glDrawElementsInstancedBaseVertex");
}
}
else if (gl_info->supported[ARB_DRAW_ELEMENTS_BASE_VERTEX])
{
GL_EXTCALL(glDrawElementsBaseVertex(primitive_type, count, idxtype,
(const char *)idx_data + (idx_size * start_idx), base_vertex_index));
checkGLcall("glDrawElementsBaseVertex");
}
else
{
gl_info->gl_ops.gl.p_glDrawElements(primitive_type, count,
idxtype, (const char *)idx_data + (idx_size * start_idx));
checkGLcall("glDrawElements");
}
}
else
{
gl_info->gl_ops.gl.p_glDrawArrays(primitive_type, start_idx, count);
checkGLcall("glDrawArrays");
}
}
/*
* Actually draw using the supplied information.
* Slower GL version which extracts info about each vertex in turn
*/
/* GL locking is done by the caller */
static void drawStridedSlow(const struct wined3d_device *device, const struct wined3d_context *context,
const struct wined3d_stream_info *si, UINT NumVertexes, GLenum glPrimType,
const void *idxData, UINT idxSize, UINT startIdx)
{
unsigned int textureNo = 0;
const WORD *pIdxBufS = NULL;
const DWORD *pIdxBufL = NULL;
UINT vx_index;
const struct wined3d_state *state = &device->stateBlock->state;
LONG SkipnStrides = startIdx;
BOOL pixelShader = use_ps(state);
BOOL specular_fog = FALSE;
const BYTE *texCoords[WINED3DDP_MAXTEXCOORD];
const BYTE *diffuse = NULL, *specular = NULL, *normal = NULL, *position = NULL;
const struct wined3d_gl_info *gl_info = context->gl_info;
UINT texture_stages = gl_info->limits.texture_stages;
const struct wined3d_stream_info_element *element;
UINT num_untracked_materials;
DWORD tex_mask = 0;
TRACE("Using slow vertex array code\n");
/* Variable Initialization */
if (idxSize)
{
/* Immediate mode drawing can't make use of indices in a vbo - get the
* data from the index buffer. If the index buffer has no vbo (not
* supported or other reason), or with user pointer drawing idxData
* will be non-NULL. */
if (!idxData)
idxData = buffer_get_sysmem(state->index_buffer, gl_info);
if (idxSize == 2) pIdxBufS = idxData;
else pIdxBufL = idxData;
} else if (idxData) {
ERR("non-NULL idxData with 0 idxSize, this should never happen\n");
return;
}
/* Start drawing in GL */
gl_info->gl_ops.gl.p_glBegin(glPrimType);
if (si->use_map & (1 << WINED3D_FFP_POSITION))
{
element = &si->elements[WINED3D_FFP_POSITION];
position = element->data.addr;
}
if (si->use_map & (1 << WINED3D_FFP_NORMAL))
{
element = &si->elements[WINED3D_FFP_NORMAL];
normal = element->data.addr;
}
else
{
gl_info->gl_ops.gl.p_glNormal3f(0, 0, 0);
}
num_untracked_materials = context->num_untracked_materials;
if (si->use_map & (1 << WINED3D_FFP_DIFFUSE))
{
element = &si->elements[WINED3D_FFP_DIFFUSE];
diffuse = element->data.addr;
if (num_untracked_materials && element->format->id != WINED3DFMT_B8G8R8A8_UNORM)
FIXME("Implement diffuse color tracking from %s\n", debug_d3dformat(element->format->id));
}
else
{
gl_info->gl_ops.gl.p_glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
}
if (si->use_map & (1 << WINED3D_FFP_SPECULAR))
{
element = &si->elements[WINED3D_FFP_SPECULAR];
specular = element->data.addr;
/* special case where the fog density is stored in the specular alpha channel */
if (state->render_states[WINED3D_RS_FOGENABLE]
&& (state->render_states[WINED3D_RS_FOGVERTEXMODE] == WINED3D_FOG_NONE
|| si->elements[WINED3D_FFP_POSITION].format->id == WINED3DFMT_R32G32B32A32_FLOAT)
&& state->render_states[WINED3D_RS_FOGTABLEMODE] == WINED3D_FOG_NONE)
{
if (gl_info->supported[EXT_FOG_COORD])
{
if (element->format->id == WINED3DFMT_B8G8R8A8_UNORM) specular_fog = TRUE;
else FIXME("Implement fog coordinates from %s\n", debug_d3dformat(element->format->id));
}
else
{
static BOOL warned;
if (!warned)
{
/* TODO: Use the fog table code from old ddraw */
FIXME("Implement fog for transformed vertices in software\n");
warned = TRUE;
}
}
}
}
else if (gl_info->supported[EXT_SECONDARY_COLOR])
{
GL_EXTCALL(glSecondaryColor3fEXT)(0, 0, 0);
}
for (textureNo = 0; textureNo < texture_stages; ++textureNo)
{
int coordIdx = state->texture_states[textureNo][WINED3D_TSS_TEXCOORD_INDEX];
DWORD texture_idx = device->texUnitMap[textureNo];
if (!gl_info->supported[ARB_MULTITEXTURE] && textureNo > 0)
{
FIXME("Program using multiple concurrent textures which this opengl implementation doesn't support\n");
continue;
}
if (!pixelShader && !state->textures[textureNo]) continue;
if (texture_idx == WINED3D_UNMAPPED_STAGE) continue;
if (coordIdx > 7)
{
TRACE("tex: %d - Skip tex coords, as being system generated\n", textureNo);
continue;
}
else if (coordIdx < 0)
{
FIXME("tex: %d - Coord index %d is less than zero, expect a crash.\n", textureNo, coordIdx);
continue;
}
if (si->use_map & (1 << (WINED3D_FFP_TEXCOORD0 + coordIdx)))
{
element = &si->elements[WINED3D_FFP_TEXCOORD0 + coordIdx];
texCoords[coordIdx] = element->data.addr;
tex_mask |= (1 << textureNo);
}
else
{
TRACE("tex: %d - Skipping tex coords, as no data supplied\n", textureNo);
if (gl_info->supported[ARB_MULTITEXTURE])
GL_EXTCALL(glMultiTexCoord4fARB(GL_TEXTURE0_ARB + texture_idx, 0, 0, 0, 1));
else
gl_info->gl_ops.gl.p_glTexCoord4f(0, 0, 0, 1);
}
}
/* We shouldn't start this function if any VBO is involved. Should I put a safety check here?
* Guess it's not necessary(we crash then anyway) and would only eat CPU time
*/
/* For each primitive */
for (vx_index = 0; vx_index < NumVertexes; ++vx_index) {
UINT texture, tmp_tex_mask;
/* Blending data and Point sizes are not supported by this function. They are not supported by the fixed
* function pipeline at all. A Fixme for them is printed after decoding the vertex declaration
*/
/* For indexed data, we need to go a few more strides in */
if (idxData)
{
/* Indexed so work out the number of strides to skip */
if (idxSize == 2)
SkipnStrides = pIdxBufS[startIdx + vx_index] + state->base_vertex_index;
else
SkipnStrides = pIdxBufL[startIdx + vx_index] + state->base_vertex_index;
}
tmp_tex_mask = tex_mask;
for (texture = 0; tmp_tex_mask; tmp_tex_mask >>= 1, ++texture)
{
int coord_idx;
const void *ptr;
DWORD texture_idx;
if (!(tmp_tex_mask & 1)) continue;
coord_idx = state->texture_states[texture][WINED3D_TSS_TEXCOORD_INDEX];
ptr = texCoords[coord_idx] + (SkipnStrides * si->elements[WINED3D_FFP_TEXCOORD0 + coord_idx].stride);
texture_idx = device->texUnitMap[texture];
multi_texcoord_funcs[si->elements[WINED3D_FFP_TEXCOORD0 + coord_idx].format->emit_idx](
GL_TEXTURE0_ARB + texture_idx, ptr);
}
/* Diffuse -------------------------------- */
if (diffuse) {
const void *ptrToCoords = diffuse + SkipnStrides * si->elements[WINED3D_FFP_DIFFUSE].stride;
diffuse_funcs[si->elements[WINED3D_FFP_DIFFUSE].format->emit_idx](ptrToCoords);
if (num_untracked_materials)
{
DWORD diffuseColor = ((const DWORD *)ptrToCoords)[0];
unsigned char i;
float color[4];
color[0] = D3DCOLOR_B_R(diffuseColor) / 255.0f;
color[1] = D3DCOLOR_B_G(diffuseColor) / 255.0f;
color[2] = D3DCOLOR_B_B(diffuseColor) / 255.0f;
color[3] = D3DCOLOR_B_A(diffuseColor) / 255.0f;
for (i = 0; i < num_untracked_materials; ++i)
{
gl_info->gl_ops.gl.p_glMaterialfv(GL_FRONT_AND_BACK, context->untracked_materials[i], color);
}
}
}
/* Specular ------------------------------- */
if (specular) {
const void *ptrToCoords = specular + SkipnStrides * si->elements[WINED3D_FFP_SPECULAR].stride;
specular_funcs[si->elements[WINED3D_FFP_SPECULAR].format->emit_idx](ptrToCoords);
if (specular_fog)
{
DWORD specularColor = *(const DWORD *)ptrToCoords;
GL_EXTCALL(glFogCoordfEXT((float) (specularColor >> 24)));
}
}
/* Normal -------------------------------- */
if (normal)
{
const void *ptrToCoords = normal + SkipnStrides * si->elements[WINED3D_FFP_NORMAL].stride;
normal_funcs[si->elements[WINED3D_FFP_NORMAL].format->emit_idx](ptrToCoords);
}
/* Position -------------------------------- */
if (position) {
const void *ptrToCoords = position + SkipnStrides * si->elements[WINED3D_FFP_POSITION].stride;
position_funcs[si->elements[WINED3D_FFP_POSITION].format->emit_idx](ptrToCoords);
}
/* For non indexed mode, step onto next parts */
if (!idxData) ++SkipnStrides;
}
gl_info->gl_ops.gl.p_glEnd();
checkGLcall("glEnd and previous calls");
}
/* GL locking is done by the caller */
static inline void send_attribute(const struct wined3d_gl_info *gl_info,
enum wined3d_format_id format, const UINT index, const void *ptr)
{
switch(format)
{
case WINED3DFMT_R32_FLOAT:
GL_EXTCALL(glVertexAttrib1fvARB(index, ptr));
break;
case WINED3DFMT_R32G32_FLOAT:
GL_EXTCALL(glVertexAttrib2fvARB(index, ptr));
break;
case WINED3DFMT_R32G32B32_FLOAT:
GL_EXTCALL(glVertexAttrib3fvARB(index, ptr));
break;
case WINED3DFMT_R32G32B32A32_FLOAT:
GL_EXTCALL(glVertexAttrib4fvARB(index, ptr));
break;
case WINED3DFMT_R8G8B8A8_UINT:
GL_EXTCALL(glVertexAttrib4ubvARB(index, ptr));
break;
case WINED3DFMT_B8G8R8A8_UNORM:
if (gl_info->supported[ARB_VERTEX_ARRAY_BGRA])
{
const DWORD *src = ptr;
DWORD c = *src & 0xff00ff00;
c |= (*src & 0xff0000) >> 16;
c |= (*src & 0xff) << 16;
GL_EXTCALL(glVertexAttrib4NubvARB(index, (GLubyte *)&c));
break;
}
/* else fallthrough */
case WINED3DFMT_R8G8B8A8_UNORM:
GL_EXTCALL(glVertexAttrib4NubvARB(index, ptr));
break;
case WINED3DFMT_R16G16_SINT:
GL_EXTCALL(glVertexAttrib4svARB(index, ptr));
break;
case WINED3DFMT_R16G16B16A16_SINT:
GL_EXTCALL(glVertexAttrib4svARB(index, ptr));
break;
case WINED3DFMT_R16G16_SNORM:
{
GLshort s[4] = {((const GLshort *)ptr)[0], ((const GLshort *)ptr)[1], 0, 1};
GL_EXTCALL(glVertexAttrib4NsvARB(index, s));
break;
}
case WINED3DFMT_R16G16_UNORM:
{
GLushort s[4] = {((const GLushort *)ptr)[0], ((const GLushort *)ptr)[1], 0, 1};
GL_EXTCALL(glVertexAttrib4NusvARB(index, s));
break;
}
case WINED3DFMT_R16G16B16A16_SNORM:
GL_EXTCALL(glVertexAttrib4NsvARB(index, ptr));
break;
case WINED3DFMT_R16G16B16A16_UNORM:
GL_EXTCALL(glVertexAttrib4NusvARB(index, ptr));
break;
case WINED3DFMT_R10G10B10A2_UINT:
FIXME("Unsure about WINED3DDECLTYPE_UDEC3\n");
/*glVertexAttrib3usvARB(instancedData[j], (GLushort *) ptr); Does not exist */
break;
case WINED3DFMT_R10G10B10A2_SNORM:
FIXME("Unsure about WINED3DDECLTYPE_DEC3N\n");
/*glVertexAttrib3NusvARB(instancedData[j], (GLushort *) ptr); Does not exist */
break;
case WINED3DFMT_R16G16_FLOAT:
/* Are those 16 bit floats. C doesn't have a 16 bit float type. I could read the single bits and calculate a 4
* byte float according to the IEEE standard
*/
if (gl_info->supported[NV_HALF_FLOAT] && gl_info->supported[NV_VERTEX_PROGRAM])
{
/* Not supported by GL_ARB_half_float_vertex */
GL_EXTCALL(glVertexAttrib2hvNV(index, ptr));
}
else
{
float x = float_16_to_32(((const unsigned short *)ptr) + 0);
float y = float_16_to_32(((const unsigned short *)ptr) + 1);
GL_EXTCALL(glVertexAttrib2fARB(index, x, y));
}
break;
case WINED3DFMT_R16G16B16A16_FLOAT:
if (gl_info->supported[NV_HALF_FLOAT] && gl_info->supported[NV_VERTEX_PROGRAM])
{
/* Not supported by GL_ARB_half_float_vertex */
GL_EXTCALL(glVertexAttrib4hvNV(index, ptr));
}
else
{
float x = float_16_to_32(((const unsigned short *)ptr) + 0);
float y = float_16_to_32(((const unsigned short *)ptr) + 1);
float z = float_16_to_32(((const unsigned short *)ptr) + 2);
float w = float_16_to_32(((const unsigned short *)ptr) + 3);
GL_EXTCALL(glVertexAttrib4fARB(index, x, y, z, w));
}
break;
default:
ERR("Unexpected attribute format: %s\n", debug_d3dformat(format));
break;
}
}
/* GL locking is done by the caller */
static void drawStridedSlowVs(const struct wined3d_gl_info *gl_info, const struct wined3d_state *state,
const struct wined3d_stream_info *si, UINT numberOfVertices, GLenum glPrimitiveType,
const void *idxData, UINT idxSize, UINT startIdx)
{
LONG SkipnStrides = startIdx + state->load_base_vertex_index;
const DWORD *pIdxBufL = NULL;
const WORD *pIdxBufS = NULL;
UINT vx_index;
int i;
const BYTE *ptr;
if (idxSize)
{
/* Immediate mode drawing can't make use of indices in a vbo - get the
* data from the index buffer. If the index buffer has no vbo (not
* supported or other reason), or with user pointer drawing idxData
* will be non-NULL. */
if (!idxData)
idxData = buffer_get_sysmem(state->index_buffer, gl_info);
if (idxSize == 2) pIdxBufS = idxData;
else pIdxBufL = idxData;
} else if (idxData) {
ERR("non-NULL idxData with 0 idxSize, this should never happen\n");
return;
}
/* Start drawing in GL */
gl_info->gl_ops.gl.p_glBegin(glPrimitiveType);
for (vx_index = 0; vx_index < numberOfVertices; ++vx_index)
{
if (idxData)
{
/* Indexed so work out the number of strides to skip */
if (idxSize == 2)
SkipnStrides = pIdxBufS[startIdx + vx_index] + state->load_base_vertex_index;
else
SkipnStrides = pIdxBufL[startIdx + vx_index] + state->load_base_vertex_index;
}
for (i = MAX_ATTRIBS - 1; i >= 0; i--)
{
if (!(si->use_map & (1 << i))) continue;
ptr = si->elements[i].data.addr + si->elements[i].stride * SkipnStrides;
send_attribute(gl_info, si->elements[i].format->id, i, ptr);
}
SkipnStrides++;
}
gl_info->gl_ops.gl.p_glEnd();
}
/* GL locking is done by the caller */
static void drawStridedInstanced(const struct wined3d_gl_info *gl_info, const struct wined3d_state *state,
const struct wined3d_stream_info *si, UINT numberOfVertices, GLenum glPrimitiveType,
const void *idxData, UINT idxSize, UINT startIdx, UINT base_vertex_index, UINT instance_count)
{
int numInstancedAttribs = 0, j;
UINT instancedData[sizeof(si->elements) / sizeof(*si->elements) /* 16 */];
GLenum idxtype = idxSize == 2 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT;
UINT i;
if (!idxSize)
{
/* This is a nasty thing. MSDN says no hardware supports that and apps have to use software vertex processing.
* We don't support this for now
*
* Shouldn't be too hard to support with opengl, in theory just call glDrawArrays instead of drawElements.
* But the StreamSourceFreq value has a different meaning in that situation.
*/
FIXME("Non-indexed instanced drawing is not supported\n");
return;
}
for (i = 0; i < sizeof(si->elements) / sizeof(*si->elements); ++i)
{
if (!(si->use_map & (1 << i))) continue;
if (state->streams[si->elements[i].stream_idx].flags & WINED3DSTREAMSOURCE_INSTANCEDATA)
{
instancedData[numInstancedAttribs] = i;
numInstancedAttribs++;
}
}
for (i = 0; i < instance_count; ++i)
{
/* Specify the instanced attributes using immediate mode calls */
for(j = 0; j < numInstancedAttribs; j++) {
const BYTE *ptr = si->elements[instancedData[j]].data.addr
+ si->elements[instancedData[j]].stride * i;
if (si->elements[instancedData[j]].data.buffer_object)
{
struct wined3d_buffer *vb = state->streams[si->elements[instancedData[j]].stream_idx].buffer;
ptr += (ULONG_PTR)buffer_get_sysmem(vb, gl_info);
}
send_attribute(gl_info, si->elements[instancedData[j]].format->id, instancedData[j], ptr);
}
if (gl_info->supported[ARB_DRAW_ELEMENTS_BASE_VERTEX])
{
GL_EXTCALL(glDrawElementsBaseVertex(glPrimitiveType, numberOfVertices, idxtype,
(const char *)idxData+(idxSize * startIdx), base_vertex_index));
checkGLcall("glDrawElementsBaseVertex");
}
else
{
gl_info->gl_ops.gl.p_glDrawElements(glPrimitiveType, numberOfVertices, idxtype,
(const char *)idxData + (idxSize * startIdx));
checkGLcall("glDrawElements");
}
}
}
static void remove_vbos(const struct wined3d_gl_info *gl_info,
const struct wined3d_state *state, struct wined3d_stream_info *s)
{
unsigned int i;
for (i = 0; i < (sizeof(s->elements) / sizeof(*s->elements)); ++i)
{
struct wined3d_stream_info_element *e;
if (!(s->use_map & (1 << i))) continue;
e = &s->elements[i];
if (e->data.buffer_object)
{
struct wined3d_buffer *vb = state->streams[e->stream_idx].buffer;
e->data.buffer_object = 0;
e->data.addr = (BYTE *)((ULONG_PTR)e->data.addr + (ULONG_PTR)buffer_get_sysmem(vb, gl_info));
}
}
}
/* Routine common to the draw primitive and draw indexed primitive routines */
void draw_primitive(struct wined3d_device *device, UINT start_idx, UINT index_count,
UINT start_instance, UINT instance_count, BOOL indexed, const void *idx_data)
{
const struct wined3d_state *state = &device->stateBlock->state;
struct wined3d_event_query *ib_query = NULL;
const struct wined3d_gl_info *gl_info;
struct wined3d_context *context;
unsigned int i;
if (!index_count) return;
if (state->render_states[WINED3D_RS_COLORWRITEENABLE])
{
/* Invalidate the back buffer memory so LockRect will read it the next time */
for (i = 0; i < device->adapter->gl_info.limits.buffers; ++i)
{
struct wined3d_surface *target = device->fb.render_targets[i];
if (target)
{
surface_load_location(target, target->draw_binding, NULL);
surface_modify_location(target, target->draw_binding, TRUE);
}
}
}
/* Signals other modules that a drawing is in progress and the stateblock finalized */
device->isInDraw = TRUE;
context = context_acquire(device, device->fb.render_targets[0]);
if (!context->valid)
{
context_release(context);
WARN("Invalid context, skipping draw.\n");
return;
}
gl_info = context->gl_info;
if (device->fb.depth_stencil)
{
/* Note that this depends on the context_acquire() call above to set
* context->render_offscreen properly. We don't currently take the
* Z-compare function into account, but we could skip loading the
* depthstencil for D3DCMP_NEVER and D3DCMP_ALWAYS as well. Also note
* that we never copy the stencil data.*/
DWORD location = context->render_offscreen ? device->fb.depth_stencil->draw_binding : SFLAG_INDRAWABLE;
if (state->render_states[WINED3D_RS_ZWRITEENABLE] || state->render_states[WINED3D_RS_ZENABLE])
{
struct wined3d_surface *ds = device->fb.depth_stencil;
RECT current_rect, draw_rect, r;
if (!context->render_offscreen && ds != device->onscreen_depth_stencil)
device_switch_onscreen_ds(device, context, ds);
if (ds->flags & location)
SetRect(&current_rect, 0, 0, ds->ds_current_size.cx, ds->ds_current_size.cy);
else
SetRectEmpty(&current_rect);
wined3d_get_draw_rect(state, &draw_rect);
IntersectRect(&r, &draw_rect, &current_rect);
if (!EqualRect(&r, &draw_rect))
surface_load_ds_location(ds, context, location);
}
}
if (!context_apply_draw_state(context, device))
{
context_release(context);
WARN("Unable to apply draw state, skipping draw.\n");
return;
}
if (device->fb.depth_stencil && state->render_states[WINED3D_RS_ZWRITEENABLE])
{
struct wined3d_surface *ds = device->fb.depth_stencil;
DWORD location = context->render_offscreen ? ds->draw_binding : SFLAG_INDRAWABLE;
surface_modify_ds_location(ds, location, ds->ds_current_size.cx, ds->ds_current_size.cy);
}
if ((!gl_info->supported[WINED3D_GL_VERSION_2_0]
|| !gl_info->supported[NV_POINT_SPRITE])
&& context->render_offscreen
&& state->render_states[WINED3D_RS_POINTSPRITEENABLE]
&& state->gl_primitive_type == GL_POINTS)
{
FIXME("Point sprite coordinate origin switching not supported.\n");
}
/* Ok, we will be updating the screen from here onwards so grab the lock */
ENTER_GL();
{
GLenum glPrimType = state->gl_primitive_type;
INT base_vertex_index = state->base_vertex_index;
BOOL emulation = FALSE;
const struct wined3d_stream_info *stream_info = &device->strided_streams;
struct wined3d_stream_info stridedlcl;
UINT idx_size = 0;
if (device->instance_count)
instance_count = device->instance_count;
if (indexed)
{
if (!state->user_stream)
{
struct wined3d_buffer *index_buffer = state->index_buffer;
if (!index_buffer->buffer_object || !stream_info->all_vbo)
idx_data = index_buffer->resource.allocatedMemory;
else
{
ib_query = index_buffer->query;
idx_data = NULL;
}
}
if (state->index_format == WINED3DFMT_R16_UINT)
idx_size = 2;
else
idx_size = 4;
}
if (!use_vs(state))
{
if (!stream_info->position_transformed && context->num_untracked_materials
&& state->render_states[WINED3D_RS_LIGHTING])
{
static BOOL warned;
if (!warned) {
FIXME("Using software emulation because not all material properties could be tracked\n");
warned = TRUE;
} else {
TRACE("Using software emulation because not all material properties could be tracked\n");
}
emulation = TRUE;
}
else if (context->fog_coord && state->render_states[WINED3D_RS_FOGENABLE])
{
/* Either write a pipeline replacement shader or convert the specular alpha from unsigned byte
* to a float in the vertex buffer
*/
static BOOL warned;
if (!warned) {
FIXME("Using software emulation because manual fog coordinates are provided\n");
warned = TRUE;
} else {
TRACE("Using software emulation because manual fog coordinates are provided\n");
}
emulation = TRUE;
}
if(emulation) {
stream_info = &stridedlcl;
memcpy(&stridedlcl, &device->strided_streams, sizeof(stridedlcl));
remove_vbos(gl_info, state, &stridedlcl);
}
}
if (device->useDrawStridedSlow || emulation)
{
/* Immediate mode drawing */
if (use_vs(state))
{
static BOOL warned;
if (!warned) {
FIXME("Using immediate mode with vertex shaders for half float emulation\n");
warned = TRUE;
} else {
TRACE("Using immediate mode with vertex shaders for half float emulation\n");
}
drawStridedSlowVs(gl_info, state, stream_info, index_count,
glPrimType, idx_data, idx_size, start_idx);
}
else
{
drawStridedSlow(device, context, stream_info, index_count,
glPrimType, idx_data, idx_size, start_idx);
}
}
else if (!gl_info->supported[ARB_INSTANCED_ARRAYS] && instance_count)
{
/* Instancing emulation with mixing immediate mode and arrays */
drawStridedInstanced(gl_info, state, stream_info, index_count, glPrimType,
idx_data, idx_size, start_idx, base_vertex_index, instance_count);
}
else
{
drawStridedFast(gl_info, glPrimType, index_count, idx_size, idx_data,
start_idx, base_vertex_index, start_instance, instance_count);
}
}
/* Finished updating the screen, restore lock */
LEAVE_GL();
if (ib_query)
wined3d_event_query_issue(ib_query, device);
for (i = 0; i < device->num_buffer_queries; ++i)
{
wined3d_event_query_issue(device->buffer_queries[i], device);
}
if (wined3d_settings.strict_draw_ordering)
gl_info->gl_ops.gl.p_glFlush(); /* Flush to ensure ordering across contexts. */
context_release(context);
TRACE("Done all gl drawing\n");
/* Control goes back to the device, stateblock values may change again */
device->isInDraw = FALSE;
}
static void normalize_normal(float *n) {
float length = n[0] * n[0] + n[1] * n[1] + n[2] * n[2];
if (length == 0.0f) return;
length = sqrtf(length);
n[0] = n[0] / length;
n[1] = n[1] / length;
n[2] = n[2] / length;
}
/* Tesselates a high order rectangular patch into single triangles using gl evaluators
*
* The problem is that OpenGL does not offer a direct way to return the tesselated primitives,
* and they can't be sent off for rendering directly either. Tesselating is slow, so we want
* to cache the patches in a vertex buffer. But more importantly, gl can't bind generated
* attributes to numbered shader attributes, so we have to store them and rebind them as needed
* in drawprim.
*
* To read back, the opengl feedback mode is used. This creates a problem because we want
* untransformed, unlit vertices, but feedback runs everything through transform and lighting.
* Thus disable lighting and set identity matrices to get unmodified colors and positions.
* To overcome clipping find the biggest x, y and z values of the vertices in the patch and scale
* them to [-1.0;+1.0] and set the viewport up to scale them back.
*
* Normals are more tricky: Draw white vertices with 3 directional lights, and calculate the
* resulting colors back to the normals.
*
* NOTE: This function activates a context for blitting, modifies matrices & viewport, but
* does not restore it because normally a draw follows immediately afterwards. The caller is
* responsible of taking care that either the gl states are restored, or the context activated
* for drawing to reset the lastWasBlit flag.
*/
HRESULT tesselate_rectpatch(struct wined3d_device *This, struct wined3d_rect_patch *patch)
{
unsigned int i, j, num_quads, out_vertex_size, buffer_size, d3d_out_vertex_size;
const struct wined3d_rect_patch_info *info = &patch->rect_patch_info;
float max_x = 0.0f, max_y = 0.0f, max_z = 0.0f, neg_z = 0.0f;
struct wined3d_state *state = &This->stateBlock->state;
struct wined3d_stream_info stream_info;
struct wined3d_stream_info_element *e;
const struct wined3d_gl_info *gl_info;
struct wined3d_context *context;
struct wined3d_shader *vs;
const BYTE *data;
DWORD vtxStride;
GLenum feedback_type;
GLfloat *feedbuffer;
/* Simply activate the context for blitting. This disables all the things we don't want and
* takes care of dirtifying. Dirtifying is preferred over pushing / popping, since drawing the
* patch (as opposed to normal draws) will most likely need different changes anyway. */
context = context_acquire(This, NULL);
gl_info = context->gl_info;
context_apply_blit_state(context, This);
/* First, locate the position data. This is provided in a vertex buffer in
* the stateblock. Beware of VBOs. */
vs = state->vertex_shader;
state->vertex_shader = NULL;
device_stream_info_from_declaration(This, &stream_info);
state->vertex_shader = vs;
e = &stream_info.elements[WINED3D_FFP_POSITION];
if (e->data.buffer_object)
{
struct wined3d_buffer *vb = state->streams[e->stream_idx].buffer;
e->data.addr = (BYTE *)((ULONG_PTR)e->data.addr + (ULONG_PTR)buffer_get_sysmem(vb, context->gl_info));
}
vtxStride = e->stride;
data = e->data.addr
+ vtxStride * info->stride * info->start_vertex_offset_height
+ vtxStride * info->start_vertex_offset_width;
/* Not entirely sure about what happens with transformed vertices */
if (stream_info.position_transformed) FIXME("Transformed position in rectpatch generation\n");
if(vtxStride % sizeof(GLfloat)) {
/* glMap2f reads vertex sizes in GLfloats, the d3d stride is in bytes.
* I don't see how the stride could not be a multiple of 4, but make sure
* to check it
*/
ERR("Vertex stride is not a multiple of sizeof(GLfloat)\n");
}
if (info->basis != WINED3D_BASIS_BEZIER)
FIXME("Basis is %s, how to handle this?\n", debug_d3dbasis(info->basis));
if (info->degree != WINED3D_DEGREE_CUBIC)
FIXME("Degree is %s, how to handle this?\n", debug_d3ddegree(info->degree));
/* First, get the boundary cube of the input data */
for (j = 0; j < info->height; ++j)
{
for (i = 0; i < info->width; ++i)
{
const float *v = (const float *)(data + vtxStride * i + vtxStride * info->stride * j);
if(fabs(v[0]) > max_x) max_x = fabsf(v[0]);
if(fabs(v[1]) > max_y) max_y = fabsf(v[1]);
if(fabs(v[2]) > max_z) max_z = fabsf(v[2]);
if(v[2] < neg_z) neg_z = v[2];
}
}
/* This needs some improvements in the vertex decl code */
FIXME("Cannot find data to generate. Only generating position and normals\n");
patch->has_normals = TRUE;
patch->has_texcoords = FALSE;
ENTER_GL();
gl_info->gl_ops.gl.p_glMatrixMode(GL_PROJECTION);
checkGLcall("glMatrixMode(GL_PROJECTION)");
gl_info->gl_ops.gl.p_glLoadIdentity();
checkGLcall("glLoadIdentity()");
gl_info->gl_ops.gl.p_glScalef(1.0f / (max_x), 1.0f / (max_y), max_z == 0.0f ? 1.0f : 1.0f / (2.0f * max_z));
gl_info->gl_ops.gl.p_glTranslatef(0.0f, 0.0f, 0.5f);
checkGLcall("glScalef");
gl_info->gl_ops.gl.p_glViewport(-max_x, -max_y, 2 * (max_x), 2 * (max_y));
checkGLcall("glViewport");
/* Some states to take care of. If we're in wireframe opengl will produce lines, and confuse
* our feedback buffer parser
*/
gl_info->gl_ops.gl.p_glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
checkGLcall("glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)");
context_invalidate_state(context, STATE_RENDER(WINED3D_RS_FILLMODE));
if (patch->has_normals)
{
static const GLfloat black[] = {0.0f, 0.0f, 0.0f, 0.0f};
static const GLfloat red[] = {1.0f, 0.0f, 0.0f, 0.0f};
static const GLfloat green[] = {0.0f, 1.0f, 0.0f, 0.0f};
static const GLfloat blue[] = {0.0f, 0.0f, 1.0f, 0.0f};
static const GLfloat white[] = {1.0f, 1.0f, 1.0f, 1.0f};
gl_info->gl_ops.gl.p_glEnable(GL_LIGHTING);
checkGLcall("glEnable(GL_LIGHTING)");
gl_info->gl_ops.gl.p_glLightModelfv(GL_LIGHT_MODEL_AMBIENT, black);
checkGLcall("glLightModel for MODEL_AMBIENT");
context_invalidate_state(context, STATE_RENDER(WINED3D_RS_AMBIENT));
for (i = 3; i < context->gl_info->limits.lights; ++i)
{
gl_info->gl_ops.gl.p_glDisable(GL_LIGHT0 + i);
checkGLcall("glDisable(GL_LIGHT0 + i)");
context_invalidate_state(context, STATE_ACTIVELIGHT(i));
}
context_invalidate_state(context, STATE_ACTIVELIGHT(0));
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_DIFFUSE, red);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_SPECULAR, black);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_AMBIENT, black);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_POSITION, red);
gl_info->gl_ops.gl.p_glEnable(GL_LIGHT0);
checkGLcall("Setting up light 1");
context_invalidate_state(context, STATE_ACTIVELIGHT(1));
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_DIFFUSE, green);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_SPECULAR, black);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_AMBIENT, black);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_POSITION, green);
gl_info->gl_ops.gl.p_glEnable(GL_LIGHT1);
checkGLcall("Setting up light 2");
context_invalidate_state(context, STATE_ACTIVELIGHT(2));
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_DIFFUSE, blue);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_SPECULAR, black);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_AMBIENT, black);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_POSITION, blue);
gl_info->gl_ops.gl.p_glEnable(GL_LIGHT2);
checkGLcall("Setting up light 3");
context_invalidate_state(context, STATE_MATERIAL);
context_invalidate_state(context, STATE_RENDER(WINED3D_RS_COLORVERTEX));
gl_info->gl_ops.gl.p_glDisable(GL_COLOR_MATERIAL);
gl_info->gl_ops.gl.p_glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, black);
gl_info->gl_ops.gl.p_glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, black);
gl_info->gl_ops.gl.p_glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, white);
checkGLcall("Setting up materials");
}
/* Enable the needed maps.
* GL_MAP2_VERTEX_3 is needed for positional data.
* GL_AUTO_NORMAL to generate normals from the position. Do not use GL_MAP2_NORMAL.
* GL_MAP2_TEXTURE_COORD_4 for texture coords
*/
num_quads = ceilf(patch->numSegs[0]) * ceilf(patch->numSegs[1]);
out_vertex_size = 3 /* position */;
d3d_out_vertex_size = 3;
gl_info->gl_ops.gl.p_glEnable(GL_MAP2_VERTEX_3);
if (patch->has_normals && patch->has_texcoords)
{
FIXME("Texcoords not handled yet\n");
feedback_type = GL_3D_COLOR_TEXTURE;
out_vertex_size += 8;
d3d_out_vertex_size += 7;
gl_info->gl_ops.gl.p_glEnable(GL_AUTO_NORMAL);
gl_info->gl_ops.gl.p_glEnable(GL_MAP2_TEXTURE_COORD_4);
}
else if (patch->has_texcoords)
{
FIXME("Texcoords not handled yet\n");
feedback_type = GL_3D_COLOR_TEXTURE;
out_vertex_size += 7;
d3d_out_vertex_size += 4;
gl_info->gl_ops.gl.p_glEnable(GL_MAP2_TEXTURE_COORD_4);
}
else if (patch->has_normals)
{
feedback_type = GL_3D_COLOR;
out_vertex_size += 4;
d3d_out_vertex_size += 3;
gl_info->gl_ops.gl.p_glEnable(GL_AUTO_NORMAL);
}
else
{
feedback_type = GL_3D;
}
checkGLcall("glEnable vertex attrib generation");
buffer_size = num_quads * out_vertex_size * 2 /* triangle list */ * 3 /* verts per tri */
+ 4 * num_quads /* 2 triangle markers per quad + num verts in tri */;
feedbuffer = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, buffer_size * sizeof(float) * 8);
gl_info->gl_ops.gl.p_glMap2f(GL_MAP2_VERTEX_3,
0.0f, 1.0f, vtxStride / sizeof(float), info->width,
0.0f, 1.0f, info->stride * vtxStride / sizeof(float), info->height,
(const GLfloat *)data);
checkGLcall("glMap2f");
if (patch->has_texcoords)
{
gl_info->gl_ops.gl.p_glMap2f(GL_MAP2_TEXTURE_COORD_4,
0.0f, 1.0f, vtxStride / sizeof(float), info->width,
0.0f, 1.0f, info->stride * vtxStride / sizeof(float), info->height,
(const GLfloat *)data);
checkGLcall("glMap2f");
}
gl_info->gl_ops.gl.p_glMapGrid2f(ceilf(patch->numSegs[0]), 0.0f, 1.0f, ceilf(patch->numSegs[1]), 0.0f, 1.0f);
checkGLcall("glMapGrid2f");
gl_info->gl_ops.gl.p_glFeedbackBuffer(buffer_size * 2, feedback_type, feedbuffer);
checkGLcall("glFeedbackBuffer");
gl_info->gl_ops.gl.p_glRenderMode(GL_FEEDBACK);
gl_info->gl_ops.gl.p_glEvalMesh2(GL_FILL, 0, ceilf(patch->numSegs[0]), 0, ceilf(patch->numSegs[1]));
checkGLcall("glEvalMesh2");
i = gl_info->gl_ops.gl.p_glRenderMode(GL_RENDER);
if (i == -1)
{
LEAVE_GL();
ERR("Feedback failed. Expected %d elements back\n", buffer_size);
HeapFree(GetProcessHeap(), 0, feedbuffer);
context_release(context);
return WINED3DERR_DRIVERINTERNALERROR;
} else if(i != buffer_size) {
LEAVE_GL();
ERR("Unexpected amount of elements returned. Expected %d, got %d\n", buffer_size, i);
HeapFree(GetProcessHeap(), 0, feedbuffer);
context_release(context);
return WINED3DERR_DRIVERINTERNALERROR;
} else {
TRACE("Got %d elements as expected\n", i);
}
HeapFree(GetProcessHeap(), 0, patch->mem);
patch->mem = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, num_quads * 6 * d3d_out_vertex_size * sizeof(float) * 8);
i = 0;
for(j = 0; j < buffer_size; j += (3 /* num verts */ * out_vertex_size + 2 /* tri marker */)) {
if(feedbuffer[j] != GL_POLYGON_TOKEN) {
ERR("Unexpected token: %f\n", feedbuffer[j]);
continue;
}
if(feedbuffer[j + 1] != 3) {
ERR("Unexpected polygon: %f corners\n", feedbuffer[j + 1]);
continue;
}
/* Somehow there are different ideas about back / front facing, so fix up the
* vertex order
*/
patch->mem[i + 0] = feedbuffer[j + out_vertex_size * 2 + 2]; /* x, triangle 2 */
patch->mem[i + 1] = feedbuffer[j + out_vertex_size * 2 + 3]; /* y, triangle 2 */
patch->mem[i + 2] = (feedbuffer[j + out_vertex_size * 2 + 4] - 0.5f) * 4.0f * max_z; /* z, triangle 3 */
if(patch->has_normals) {
patch->mem[i + 3] = feedbuffer[j + out_vertex_size * 2 + 5];
patch->mem[i + 4] = feedbuffer[j + out_vertex_size * 2 + 6];
patch->mem[i + 5] = feedbuffer[j + out_vertex_size * 2 + 7];
}
i += d3d_out_vertex_size;
patch->mem[i + 0] = feedbuffer[j + out_vertex_size * 1 + 2]; /* x, triangle 2 */
patch->mem[i + 1] = feedbuffer[j + out_vertex_size * 1 + 3]; /* y, triangle 2 */
patch->mem[i + 2] = (feedbuffer[j + out_vertex_size * 1 + 4] - 0.5f) * 4.0f * max_z; /* z, triangle 2 */
if(patch->has_normals) {
patch->mem[i + 3] = feedbuffer[j + out_vertex_size * 1 + 5];
patch->mem[i + 4] = feedbuffer[j + out_vertex_size * 1 + 6];
patch->mem[i + 5] = feedbuffer[j + out_vertex_size * 1 + 7];
}
i += d3d_out_vertex_size;
patch->mem[i + 0] = feedbuffer[j + out_vertex_size * 0 + 2]; /* x, triangle 1 */
patch->mem[i + 1] = feedbuffer[j + out_vertex_size * 0 + 3]; /* y, triangle 1 */
patch->mem[i + 2] = (feedbuffer[j + out_vertex_size * 0 + 4] - 0.5f) * 4.0f * max_z; /* z, triangle 1 */
if(patch->has_normals) {
patch->mem[i + 3] = feedbuffer[j + out_vertex_size * 0 + 5];
patch->mem[i + 4] = feedbuffer[j + out_vertex_size * 0 + 6];
patch->mem[i + 5] = feedbuffer[j + out_vertex_size * 0 + 7];
}
i += d3d_out_vertex_size;
}
if(patch->has_normals) {
/* Now do the same with reverse light directions */
static const GLfloat x[] = {-1.0f, 0.0f, 0.0f, 0.0f};
static const GLfloat y[] = { 0.0f, -1.0f, 0.0f, 0.0f};
static const GLfloat z[] = { 0.0f, 0.0f, -1.0f, 0.0f};
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_POSITION, x);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_POSITION, y);
gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_POSITION, z);
checkGLcall("Setting up reverse light directions");
gl_info->gl_ops.gl.p_glRenderMode(GL_FEEDBACK);
checkGLcall("glRenderMode(GL_FEEDBACK)");
gl_info->gl_ops.gl.p_glEvalMesh2(GL_FILL, 0, ceilf(patch->numSegs[0]), 0, ceilf(patch->numSegs[1]));
checkGLcall("glEvalMesh2");
i = gl_info->gl_ops.gl.p_glRenderMode(GL_RENDER);
checkGLcall("glRenderMode(GL_RENDER)");
i = 0;
for(j = 0; j < buffer_size; j += (3 /* num verts */ * out_vertex_size + 2 /* tri marker */)) {
if(feedbuffer[j] != GL_POLYGON_TOKEN) {
ERR("Unexpected token: %f\n", feedbuffer[j]);
continue;
}
if(feedbuffer[j + 1] != 3) {
ERR("Unexpected polygon: %f corners\n", feedbuffer[j + 1]);
continue;
}
if(patch->mem[i + 3] == 0.0f)
patch->mem[i + 3] = -feedbuffer[j + out_vertex_size * 2 + 5];
if(patch->mem[i + 4] == 0.0f)
patch->mem[i + 4] = -feedbuffer[j + out_vertex_size * 2 + 6];
if(patch->mem[i + 5] == 0.0f)
patch->mem[i + 5] = -feedbuffer[j + out_vertex_size * 2 + 7];
normalize_normal(patch->mem + i + 3);
i += d3d_out_vertex_size;
if(patch->mem[i + 3] == 0.0f)
patch->mem[i + 3] = -feedbuffer[j + out_vertex_size * 1 + 5];
if(patch->mem[i + 4] == 0.0f)
patch->mem[i + 4] = -feedbuffer[j + out_vertex_size * 1 + 6];
if(patch->mem[i + 5] == 0.0f)
patch->mem[i + 5] = -feedbuffer[j + out_vertex_size * 1 + 7];
normalize_normal(patch->mem + i + 3);
i += d3d_out_vertex_size;
if(patch->mem[i + 3] == 0.0f)
patch->mem[i + 3] = -feedbuffer[j + out_vertex_size * 0 + 5];
if(patch->mem[i + 4] == 0.0f)
patch->mem[i + 4] = -feedbuffer[j + out_vertex_size * 0 + 6];
if(patch->mem[i + 5] == 0.0f)
patch->mem[i + 5] = -feedbuffer[j + out_vertex_size * 0 + 7];
normalize_normal(patch->mem + i + 3);
i += d3d_out_vertex_size;
}
}
gl_info->gl_ops.gl.p_glDisable(GL_MAP2_VERTEX_3);
gl_info->gl_ops.gl.p_glDisable(GL_AUTO_NORMAL);
gl_info->gl_ops.gl.p_glDisable(GL_MAP2_NORMAL);
gl_info->gl_ops.gl.p_glDisable(GL_MAP2_TEXTURE_COORD_4);
checkGLcall("glDisable vertex attrib generation");
LEAVE_GL();
context_release(context);
HeapFree(GetProcessHeap(), 0, feedbuffer);
vtxStride = 3 * sizeof(float);
if(patch->has_normals) {
vtxStride += 3 * sizeof(float);
}
if(patch->has_texcoords) {
vtxStride += 4 * sizeof(float);
}
memset(&patch->strided, 0, sizeof(patch->strided));
patch->strided.position.format = WINED3DFMT_R32G32B32_FLOAT;
patch->strided.position.data = (BYTE *)patch->mem;
patch->strided.position.stride = vtxStride;
if (patch->has_normals)
{
patch->strided.normal.format = WINED3DFMT_R32G32B32_FLOAT;
patch->strided.normal.data = (BYTE *)patch->mem + 3 * sizeof(float) /* pos */;
patch->strided.normal.stride = vtxStride;
}
if (patch->has_texcoords)
{
patch->strided.tex_coords[0].format = WINED3DFMT_R32G32B32A32_FLOAT;
patch->strided.tex_coords[0].data = (BYTE *)patch->mem + 3 * sizeof(float) /* pos */;
if (patch->has_normals)
patch->strided.tex_coords[0].data += 3 * sizeof(float);
patch->strided.tex_coords[0].stride = vtxStride;
}
return WINED3D_OK;
}