xemu/target/mips/cpu.c

671 lines
21 KiB
C
Raw Normal View History

/*
* QEMU MIPS CPU
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qemu/qemu-print.h"
2016-03-14 08:01:28 +00:00
#include "qapi/error.h"
#include "cpu.h"
#include "internal.h"
#include "kvm_mips.h"
#include "qemu/module.h"
#include "sysemu/kvm.h"
#include "sysemu/qtest.h"
#include "exec/exec-all.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-clock.h"
#include "semihosting/semihost.h"
#include "qapi/qapi-commands-machine-target.h"
#include "fpu_helper.h"
const char regnames[32][3] = {
"r0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
};
static void fpu_dump_fpr(fpr_t *fpr, FILE *f, bool is_fpu64)
{
if (is_fpu64) {
qemu_fprintf(f, "w:%08x d:%016" PRIx64 " fd:%13g fs:%13g psu: %13g\n",
fpr->w[FP_ENDIAN_IDX], fpr->d,
(double)fpr->fd,
(double)fpr->fs[FP_ENDIAN_IDX],
(double)fpr->fs[!FP_ENDIAN_IDX]);
} else {
fpr_t tmp;
tmp.w[FP_ENDIAN_IDX] = fpr->w[FP_ENDIAN_IDX];
tmp.w[!FP_ENDIAN_IDX] = (fpr + 1)->w[FP_ENDIAN_IDX];
qemu_fprintf(f, "w:%08x d:%016" PRIx64 " fd:%13g fs:%13g psu:%13g\n",
tmp.w[FP_ENDIAN_IDX], tmp.d,
(double)tmp.fd,
(double)tmp.fs[FP_ENDIAN_IDX],
(double)tmp.fs[!FP_ENDIAN_IDX]);
}
}
static void fpu_dump_state(CPUMIPSState *env, FILE *f, int flags)
{
int i;
bool is_fpu64 = !!(env->hflags & MIPS_HFLAG_F64);
qemu_fprintf(f,
"CP1 FCR0 0x%08x FCR31 0x%08x SR.FR %d fp_status 0x%02x\n",
env->active_fpu.fcr0, env->active_fpu.fcr31, is_fpu64,
get_float_exception_flags(&env->active_fpu.fp_status));
for (i = 0; i < 32; (is_fpu64) ? i++ : (i += 2)) {
qemu_fprintf(f, "%3s: ", fregnames[i]);
fpu_dump_fpr(&env->active_fpu.fpr[i], f, is_fpu64);
}
}
static void mips_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int i;
qemu_fprintf(f, "pc=0x" TARGET_FMT_lx " HI=0x" TARGET_FMT_lx
" LO=0x" TARGET_FMT_lx " ds %04x "
TARGET_FMT_lx " " TARGET_FMT_ld "\n",
env->active_tc.PC, env->active_tc.HI[0], env->active_tc.LO[0],
env->hflags, env->btarget, env->bcond);
for (i = 0; i < 32; i++) {
if ((i & 3) == 0) {
qemu_fprintf(f, "GPR%02d:", i);
}
qemu_fprintf(f, " %s " TARGET_FMT_lx,
regnames[i], env->active_tc.gpr[i]);
if ((i & 3) == 3) {
qemu_fprintf(f, "\n");
}
}
qemu_fprintf(f, "CP0 Status 0x%08x Cause 0x%08x EPC 0x"
TARGET_FMT_lx "\n",
env->CP0_Status, env->CP0_Cause, env->CP0_EPC);
qemu_fprintf(f, " Config0 0x%08x Config1 0x%08x LLAddr 0x%016"
PRIx64 "\n",
env->CP0_Config0, env->CP0_Config1, env->CP0_LLAddr);
qemu_fprintf(f, " Config2 0x%08x Config3 0x%08x\n",
env->CP0_Config2, env->CP0_Config3);
qemu_fprintf(f, " Config4 0x%08x Config5 0x%08x\n",
env->CP0_Config4, env->CP0_Config5);
if ((flags & CPU_DUMP_FPU) && (env->hflags & MIPS_HFLAG_FPU)) {
fpu_dump_state(env, f, flags);
}
}
void cpu_set_exception_base(int vp_index, target_ulong address)
{
MIPSCPU *vp = MIPS_CPU(qemu_get_cpu(vp_index));
vp->env.exception_base = address;
}
static void mips_cpu_set_pc(CPUState *cs, vaddr value)
{
MIPSCPU *cpu = MIPS_CPU(cs);
mips_env_set_pc(&cpu->env, value);
}
static bool mips_cpu_has_work(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
bool has_work = false;
/*
* Prior to MIPS Release 6 it is implementation dependent if non-enabled
* interrupts wake-up the CPU, however most of the implementations only
* check for interrupts that can be taken.
*/
if ((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
cpu_mips_hw_interrupts_pending(env)) {
if (cpu_mips_hw_interrupts_enabled(env) ||
(env->insn_flags & ISA_MIPS_R6)) {
has_work = true;
}
}
/* MIPS-MT has the ability to halt the CPU. */
if (ase_mt_available(env)) {
/*
* The QEMU model will issue an _WAKE request whenever the CPUs
* should be woken up.
*/
if (cs->interrupt_request & CPU_INTERRUPT_WAKE) {
has_work = true;
}
if (!mips_vpe_active(env)) {
has_work = false;
}
}
/* MIPS Release 6 has the ability to halt the CPU. */
if (env->CP0_Config5 & (1 << CP0C5_VP)) {
if (cs->interrupt_request & CPU_INTERRUPT_WAKE) {
has_work = true;
}
if (!mips_vp_active(env)) {
has_work = false;
}
}
return has_work;
}
#include "cpu-defs.c.inc"
static void mips_cpu_reset(DeviceState *dev)
{
CPUState *cs = CPU(dev);
MIPSCPU *cpu = MIPS_CPU(cs);
MIPSCPUClass *mcc = MIPS_CPU_GET_CLASS(cpu);
CPUMIPSState *env = &cpu->env;
mcc->parent_reset(dev);
memset(env, 0, offsetof(CPUMIPSState, end_reset_fields));
/* Reset registers to their default values */
env->CP0_PRid = env->cpu_model->CP0_PRid;
env->CP0_Config0 = env->cpu_model->CP0_Config0;
#if TARGET_BIG_ENDIAN
env->CP0_Config0 |= (1 << CP0C0_BE);
#endif
env->CP0_Config1 = env->cpu_model->CP0_Config1;
env->CP0_Config2 = env->cpu_model->CP0_Config2;
env->CP0_Config3 = env->cpu_model->CP0_Config3;
env->CP0_Config4 = env->cpu_model->CP0_Config4;
env->CP0_Config4_rw_bitmask = env->cpu_model->CP0_Config4_rw_bitmask;
env->CP0_Config5 = env->cpu_model->CP0_Config5;
env->CP0_Config5_rw_bitmask = env->cpu_model->CP0_Config5_rw_bitmask;
env->CP0_Config6 = env->cpu_model->CP0_Config6;
env->CP0_Config6_rw_bitmask = env->cpu_model->CP0_Config6_rw_bitmask;
env->CP0_Config7 = env->cpu_model->CP0_Config7;
env->CP0_Config7_rw_bitmask = env->cpu_model->CP0_Config7_rw_bitmask;
env->CP0_LLAddr_rw_bitmask = env->cpu_model->CP0_LLAddr_rw_bitmask
<< env->cpu_model->CP0_LLAddr_shift;
env->CP0_LLAddr_shift = env->cpu_model->CP0_LLAddr_shift;
env->SYNCI_Step = env->cpu_model->SYNCI_Step;
env->CCRes = env->cpu_model->CCRes;
env->CP0_Status_rw_bitmask = env->cpu_model->CP0_Status_rw_bitmask;
env->CP0_TCStatus_rw_bitmask = env->cpu_model->CP0_TCStatus_rw_bitmask;
env->CP0_SRSCtl = env->cpu_model->CP0_SRSCtl;
env->current_tc = 0;
env->SEGBITS = env->cpu_model->SEGBITS;
env->SEGMask = (target_ulong)((1ULL << env->cpu_model->SEGBITS) - 1);
#if defined(TARGET_MIPS64)
if (env->cpu_model->insn_flags & ISA_MIPS3) {
env->SEGMask |= 3ULL << 62;
}
#endif
env->PABITS = env->cpu_model->PABITS;
env->CP0_SRSConf0_rw_bitmask = env->cpu_model->CP0_SRSConf0_rw_bitmask;
env->CP0_SRSConf0 = env->cpu_model->CP0_SRSConf0;
env->CP0_SRSConf1_rw_bitmask = env->cpu_model->CP0_SRSConf1_rw_bitmask;
env->CP0_SRSConf1 = env->cpu_model->CP0_SRSConf1;
env->CP0_SRSConf2_rw_bitmask = env->cpu_model->CP0_SRSConf2_rw_bitmask;
env->CP0_SRSConf2 = env->cpu_model->CP0_SRSConf2;
env->CP0_SRSConf3_rw_bitmask = env->cpu_model->CP0_SRSConf3_rw_bitmask;
env->CP0_SRSConf3 = env->cpu_model->CP0_SRSConf3;
env->CP0_SRSConf4_rw_bitmask = env->cpu_model->CP0_SRSConf4_rw_bitmask;
env->CP0_SRSConf4 = env->cpu_model->CP0_SRSConf4;
env->CP0_PageGrain_rw_bitmask = env->cpu_model->CP0_PageGrain_rw_bitmask;
env->CP0_PageGrain = env->cpu_model->CP0_PageGrain;
env->CP0_EBaseWG_rw_bitmask = env->cpu_model->CP0_EBaseWG_rw_bitmask;
env->active_fpu.fcr0 = env->cpu_model->CP1_fcr0;
env->active_fpu.fcr31_rw_bitmask = env->cpu_model->CP1_fcr31_rw_bitmask;
env->active_fpu.fcr31 = env->cpu_model->CP1_fcr31;
env->msair = env->cpu_model->MSAIR;
env->insn_flags = env->cpu_model->insn_flags;
#if defined(CONFIG_USER_ONLY)
env->CP0_Status = (MIPS_HFLAG_UM << CP0St_KSU);
# ifdef TARGET_MIPS64
/* Enable 64-bit register mode. */
env->CP0_Status |= (1 << CP0St_PX);
# endif
# ifdef TARGET_ABI_MIPSN64
/* Enable 64-bit address mode. */
env->CP0_Status |= (1 << CP0St_UX);
# endif
/*
* Enable access to the CPUNum, SYNCI_Step, CC, and CCRes RDHWR
* hardware registers.
*/
env->CP0_HWREna |= 0x0000000F;
if (env->CP0_Config1 & (1 << CP0C1_FP)) {
env->CP0_Status |= (1 << CP0St_CU1);
}
if (env->CP0_Config3 & (1 << CP0C3_DSPP)) {
env->CP0_Status |= (1 << CP0St_MX);
}
# if defined(TARGET_MIPS64)
/* For MIPS64, init FR bit to 1 if FPU unit is there and bit is writable. */
if ((env->CP0_Config1 & (1 << CP0C1_FP)) &&
(env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) {
env->CP0_Status |= (1 << CP0St_FR);
}
# endif
#else /* !CONFIG_USER_ONLY */
if (env->hflags & MIPS_HFLAG_BMASK) {
/*
* If the exception was raised from a delay slot,
* come back to the jump.
*/
env->CP0_ErrorEPC = (env->active_tc.PC
- (env->hflags & MIPS_HFLAG_B16 ? 2 : 4));
} else {
env->CP0_ErrorEPC = env->active_tc.PC;
}
env->active_tc.PC = env->exception_base;
env->CP0_Random = env->tlb->nb_tlb - 1;
env->tlb->tlb_in_use = env->tlb->nb_tlb;
env->CP0_Wired = 0;
env->CP0_GlobalNumber = (cs->cpu_index & 0xFF) << CP0GN_VPId;
env->CP0_EBase = (cs->cpu_index & 0x3FF);
if (mips_um_ksegs_enabled()) {
env->CP0_EBase |= 0x40000000;
} else {
env->CP0_EBase |= (int32_t)0x80000000;
}
if (env->CP0_Config3 & (1 << CP0C3_CMGCR)) {
env->CP0_CMGCRBase = 0x1fbf8000 >> 4;
}
env->CP0_EntryHi_ASID_mask = (env->CP0_Config5 & (1 << CP0C5_MI)) ?
0x0 : (env->CP0_Config4 & (1 << CP0C4_AE)) ? 0x3ff : 0xff;
env->CP0_Status = (1 << CP0St_BEV) | (1 << CP0St_ERL);
/*
* Vectored interrupts not implemented, timer on int 7,
* no performance counters.
*/
env->CP0_IntCtl = 0xe0000000;
{
int i;
for (i = 0; i < 7; i++) {
env->CP0_WatchLo[i] = 0;
env->CP0_WatchHi[i] = 1 << CP0WH_M;
}
env->CP0_WatchLo[7] = 0;
env->CP0_WatchHi[7] = 0;
}
/* Count register increments in debug mode, EJTAG version 1 */
env->CP0_Debug = (1 << CP0DB_CNT) | (0x1 << CP0DB_VER);
cpu_mips_store_count(env, 1);
if (ase_mt_available(env)) {
int i;
/* Only TC0 on VPE 0 starts as active. */
for (i = 0; i < ARRAY_SIZE(env->tcs); i++) {
env->tcs[i].CP0_TCBind = cs->cpu_index << CP0TCBd_CurVPE;
env->tcs[i].CP0_TCHalt = 1;
}
env->active_tc.CP0_TCHalt = 1;
cs->halted = 1;
if (cs->cpu_index == 0) {
/* VPE0 starts up enabled. */
env->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
env->CP0_VPEConf0 |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
/* TC0 starts up unhalted. */
cs->halted = 0;
env->active_tc.CP0_TCHalt = 0;
env->tcs[0].CP0_TCHalt = 0;
/* With thread 0 active. */
env->active_tc.CP0_TCStatus = (1 << CP0TCSt_A);
env->tcs[0].CP0_TCStatus = (1 << CP0TCSt_A);
}
}
/*
* Configure default legacy segmentation control. We use this regardless of
* whether segmentation control is presented to the guest.
*/
/* KSeg3 (seg0 0xE0000000..0xFFFFFFFF) */
env->CP0_SegCtl0 = (CP0SC_AM_MK << CP0SC_AM);
/* KSeg2 (seg1 0xC0000000..0xDFFFFFFF) */
env->CP0_SegCtl0 |= ((CP0SC_AM_MSK << CP0SC_AM)) << 16;
/* KSeg1 (seg2 0xA0000000..0x9FFFFFFF) */
env->CP0_SegCtl1 = (0 << CP0SC_PA) | (CP0SC_AM_UK << CP0SC_AM) |
(2 << CP0SC_C);
/* KSeg0 (seg3 0x80000000..0x9FFFFFFF) */
env->CP0_SegCtl1 |= ((0 << CP0SC_PA) | (CP0SC_AM_UK << CP0SC_AM) |
(3 << CP0SC_C)) << 16;
/* USeg (seg4 0x40000000..0x7FFFFFFF) */
env->CP0_SegCtl2 = (2 << CP0SC_PA) | (CP0SC_AM_MUSK << CP0SC_AM) |
(1 << CP0SC_EU) | (2 << CP0SC_C);
/* USeg (seg5 0x00000000..0x3FFFFFFF) */
env->CP0_SegCtl2 |= ((0 << CP0SC_PA) | (CP0SC_AM_MUSK << CP0SC_AM) |
(1 << CP0SC_EU) | (2 << CP0SC_C)) << 16;
/* XKPhys (note, SegCtl2.XR = 0, so XAM won't be used) */
env->CP0_SegCtl1 |= (CP0SC_AM_UK << CP0SC1_XAM);
#endif /* !CONFIG_USER_ONLY */
if ((env->insn_flags & ISA_MIPS_R6) &&
(env->active_fpu.fcr0 & (1 << FCR0_F64))) {
/* Status.FR = 0 mode in 64-bit FPU not allowed in R6 */
env->CP0_Status |= (1 << CP0St_FR);
}
if (env->insn_flags & ISA_MIPS_R6) {
/* PTW = 1 */
env->CP0_PWSize = 0x40;
/* GDI = 12 */
/* UDI = 12 */
/* MDI = 12 */
/* PRI = 12 */
/* PTEI = 2 */
env->CP0_PWField = 0x0C30C302;
} else {
/* GDI = 0 */
/* UDI = 0 */
/* MDI = 0 */
/* PRI = 0 */
/* PTEI = 2 */
env->CP0_PWField = 0x02;
}
if (env->CP0_Config3 & (1 << CP0C3_ISA) & (1 << (CP0C3_ISA + 1))) {
/* microMIPS on reset when Config3.ISA is 3 */
env->hflags |= MIPS_HFLAG_M16;
}
msa_reset(env);
compute_hflags(env);
restore_fp_status(env);
restore_pamask(env);
cs->exception_index = EXCP_NONE;
if (semihosting_get_argc()) {
/* UHI interface can be used to obtain argc and argv */
env->active_tc.gpr[4] = -1;
}
#ifndef CONFIG_USER_ONLY
if (kvm_enabled()) {
kvm_mips_reset_vcpu(cpu);
}
#endif
}
static void mips_cpu_disas_set_info(CPUState *s, disassemble_info *info)
{
MIPSCPU *cpu = MIPS_CPU(s);
CPUMIPSState *env = &cpu->env;
if (!(env->insn_flags & ISA_NANOMIPS32)) {
#if TARGET_BIG_ENDIAN
info->print_insn = print_insn_big_mips;
#else
info->print_insn = print_insn_little_mips;
#endif
} else {
#if defined(CONFIG_NANOMIPS_DIS)
info->print_insn = print_insn_nanomips;
#endif
}
}
/*
* Since commit 6af0bf9c7c3 this model assumes a CPU clocked at 200MHz.
*/
#define CPU_FREQ_HZ_DEFAULT 200000000
static void mips_cp0_period_set(MIPSCPU *cpu)
{
CPUMIPSState *env = &cpu->env;
env->cp0_count_ns = clock_ticks_to_ns(MIPS_CPU(cpu)->clock,
env->cpu_model->CCRes);
assert(env->cp0_count_ns);
}
static void mips_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
MIPSCPU *cpu = MIPS_CPU(dev);
CPUMIPSState *env = &cpu->env;
MIPSCPUClass *mcc = MIPS_CPU_GET_CLASS(dev);
Error *local_err = NULL;
if (!clock_get(cpu->clock)) {
#ifndef CONFIG_USER_ONLY
if (!qtest_enabled()) {
g_autofree char *cpu_freq_str = freq_to_str(CPU_FREQ_HZ_DEFAULT);
warn_report("CPU input clock is not connected to any output clock, "
"using default frequency of %s.", cpu_freq_str);
}
#endif
/* Initialize the frequency in case the clock remains unconnected. */
clock_set_hz(cpu->clock, CPU_FREQ_HZ_DEFAULT);
}
mips_cp0_period_set(cpu);
cpu_exec_realizefn(cs, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
env->exception_base = (int32_t)0xBFC00000;
#if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
mmu_init(env, env->cpu_model);
#endif
fpu_init(env, env->cpu_model);
mvp_init(env);
cpu_reset(cs);
qemu_init_vcpu(cs);
mcc->parent_realize(dev, errp);
}
static void mips_cpu_initfn(Object *obj)
{
MIPSCPU *cpu = MIPS_CPU(obj);
CPUMIPSState *env = &cpu->env;
MIPSCPUClass *mcc = MIPS_CPU_GET_CLASS(obj);
cpu_set_cpustate_pointers(cpu);
cpu->clock = qdev_init_clock_in(DEVICE(obj), "clk-in", NULL, cpu, 0);
env->cpu_model = mcc->cpu_def;
}
static char *mips_cpu_type_name(const char *cpu_model)
{
return g_strdup_printf(MIPS_CPU_TYPE_NAME("%s"), cpu_model);
}
static ObjectClass *mips_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
typename = mips_cpu_type_name(cpu_model);
oc = object_class_by_name(typename);
g_free(typename);
return oc;
}
#ifndef CONFIG_USER_ONLY
#include "hw/core/sysemu-cpu-ops.h"
static const struct SysemuCPUOps mips_sysemu_ops = {
.get_phys_page_debug = mips_cpu_get_phys_page_debug,
.legacy_vmsd = &vmstate_mips_cpu,
};
#endif
#ifdef CONFIG_TCG
#include "hw/core/tcg-cpu-ops.h"
/*
* NB: cannot be const, as some elements are changed for specific
* mips hardware (see hw/mips/jazz.c).
*/
static const struct TCGCPUOps mips_tcg_ops = {
.initialize = mips_tcg_init,
.synchronize_from_tb = mips_cpu_synchronize_from_tb,
#if !defined(CONFIG_USER_ONLY)
.tlb_fill = mips_cpu_tlb_fill,
.cpu_exec_interrupt = mips_cpu_exec_interrupt,
.do_interrupt = mips_cpu_do_interrupt,
.do_transaction_failed = mips_cpu_do_transaction_failed,
.do_unaligned_access = mips_cpu_do_unaligned_access,
.io_recompile_replay_branch = mips_io_recompile_replay_branch,
#endif /* !CONFIG_USER_ONLY */
};
#endif /* CONFIG_TCG */
static void mips_cpu_class_init(ObjectClass *c, void *data)
{
MIPSCPUClass *mcc = MIPS_CPU_CLASS(c);
CPUClass *cc = CPU_CLASS(c);
DeviceClass *dc = DEVICE_CLASS(c);
device_class_set_parent_realize(dc, mips_cpu_realizefn,
&mcc->parent_realize);
cpu: Use DeviceClass reset instead of a special CPUClass reset The CPUClass has a 'reset' method. This is a legacy from when TYPE_CPU used not to inherit from TYPE_DEVICE. We don't need it any more, as we can simply use the TYPE_DEVICE reset. The 'cpu_reset()' function is kept as the API which most places use to reset a CPU; it is now a wrapper which calls device_cold_reset() and then the tracepoint function. This change should not cause CPU objects to be reset more often than they are at the moment, because: * nobody is directly calling device_cold_reset() or qdev_reset_all() on CPU objects * no CPU object is on a qbus, so they will not be reset either by somebody calling qbus_reset_all()/bus_cold_reset(), or by the main "reset sysbus and everything in the qbus tree" reset that most devices are reset by Note that this does not change the need for each machine or whatever to use qemu_register_reset() to arrange to call cpu_reset() -- that is necessary because CPU objects are not on any qbus, so they don't get reset when the qbus tree rooted at the sysbus bus is reset, and this isn't being changed here. All the changes to the files under target/ were made using the included Coccinelle script, except: (1) the deletion of the now-inaccurate and not terribly useful "CPUClass::reset" comments was done with a perl one-liner afterwards: perl -n -i -e '/ CPUClass::reset/ or print' target/*/*.c (2) this bit of the s390 change was done by hand, because the Coccinelle script is not sophisticated enough to handle the parent_reset call being inside another function: | @@ -96,8 +96,9 @@ static void s390_cpu_reset(CPUState *s, cpu_reset_type type) | S390CPU *cpu = S390_CPU(s); | S390CPUClass *scc = S390_CPU_GET_CLASS(cpu); | CPUS390XState *env = &cpu->env; |+ DeviceState *dev = DEVICE(s); | |- scc->parent_reset(s); |+ scc->parent_reset(dev); | cpu->env.sigp_order = 0; | s390_cpu_set_state(S390_CPU_STATE_STOPPED, cpu); Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-Id: <20200303100511.5498-1-peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2020-03-03 10:05:11 +00:00
device_class_set_parent_reset(dc, mips_cpu_reset, &mcc->parent_reset);
cc->class_by_name = mips_cpu_class_by_name;
cc->has_work = mips_cpu_has_work;
cc->dump_state = mips_cpu_dump_state;
cc->set_pc = mips_cpu_set_pc;
cc->gdb_read_register = mips_cpu_gdb_read_register;
cc->gdb_write_register = mips_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
cc->sysemu_ops = &mips_sysemu_ops;
#endif
cc->disas_set_info = mips_cpu_disas_set_info;
cc->gdb_num_core_regs = 73;
cc->gdb_stop_before_watchpoint = true;
#ifdef CONFIG_TCG
cc->tcg_ops = &mips_tcg_ops;
#endif /* CONFIG_TCG */
}
static const TypeInfo mips_cpu_type_info = {
.name = TYPE_MIPS_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(MIPSCPU),
.instance_init = mips_cpu_initfn,
.abstract = true,
.class_size = sizeof(MIPSCPUClass),
.class_init = mips_cpu_class_init,
};
static void mips_cpu_cpudef_class_init(ObjectClass *oc, void *data)
{
MIPSCPUClass *mcc = MIPS_CPU_CLASS(oc);
mcc->cpu_def = data;
}
static void mips_register_cpudef_type(const struct mips_def_t *def)
{
char *typename = mips_cpu_type_name(def->name);
TypeInfo ti = {
.name = typename,
.parent = TYPE_MIPS_CPU,
.class_init = mips_cpu_cpudef_class_init,
.class_data = (void *)def,
};
type_register(&ti);
g_free(typename);
}
static void mips_cpu_register_types(void)
{
int i;
type_register_static(&mips_cpu_type_info);
for (i = 0; i < mips_defs_number; i++) {
mips_register_cpudef_type(&mips_defs[i]);
}
}
type_init(mips_cpu_register_types)
static void mips_cpu_add_definition(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
CpuDefinitionInfoList **cpu_list = user_data;
CpuDefinitionInfo *info;
const char *typename;
typename = object_class_get_name(oc);
info = g_malloc0(sizeof(*info));
info->name = g_strndup(typename,
strlen(typename) - strlen("-" TYPE_MIPS_CPU));
info->q_typename = g_strdup(typename);
QAPI_LIST_PREPEND(*cpu_list, info);
}
CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
{
CpuDefinitionInfoList *cpu_list = NULL;
GSList *list;
list = object_class_get_list(TYPE_MIPS_CPU, false);
g_slist_foreach(list, mips_cpu_add_definition, &cpu_list);
g_slist_free(list);
return cpu_list;
}
/* Could be used by generic CPU object */
MIPSCPU *mips_cpu_create_with_clock(const char *cpu_type, Clock *cpu_refclk)
{
DeviceState *cpu;
cpu = DEVICE(object_new(cpu_type));
qdev_connect_clock_in(cpu, "clk-in", cpu_refclk);
qdev_realize(cpu, NULL, &error_abort);
return MIPS_CPU(cpu);
}
bool cpu_supports_isa(const CPUMIPSState *env, uint64_t isa_mask)
{
return (env->cpu_model->insn_flags & isa_mask) != 0;
}
bool cpu_type_supports_isa(const char *cpu_type, uint64_t isa)
{
const MIPSCPUClass *mcc = MIPS_CPU_CLASS(object_class_by_name(cpu_type));
return (mcc->cpu_def->insn_flags & isa) != 0;
}
bool cpu_type_supports_cps_smp(const char *cpu_type)
{
const MIPSCPUClass *mcc = MIPS_CPU_CLASS(object_class_by_name(cpu_type));
return (mcc->cpu_def->CP0_Config3 & (1 << CP0C3_CMGCR)) != 0;
}