mirror of
https://github.com/xemu-project/xemu.git
synced 2024-11-24 03:59:52 +00:00
target/avr: Add instruction translation - Data Transfer Instructions
This includes: - MOV, MOVW - LDI, LDS LDX LDY LDZ - LDDY, LDDZ - STS, STX STY STZ - STDY, STDZ - LPM, LPMX - ELPM, ELPMX - SPM, SPMX - IN, OUT - PUSH, POP - XCH - LAS, LAC LAT Signed-off-by: Michael Rolnik <mrolnik@gmail.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Aleksandar Markovic <aleksandar.m.mail@gmail.com> Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Aleksandar Markovic <aleksandar.m.mail@gmail.com> Signed-off-by: Thomas Huth <huth@tuxfamily.org> Message-Id: <20200705140315.260514-14-huth@tuxfamily.org> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
This commit is contained in:
parent
9d316c75ab
commit
9732b024f7
@ -107,3 +107,59 @@ SBIC 1001 1001 reg:5 bit:3
|
||||
SBIS 1001 1011 reg:5 bit:3
|
||||
BRBS 1111 00 ....... ... @op_bit_imm
|
||||
BRBC 1111 01 ....... ... @op_bit_imm
|
||||
|
||||
#
|
||||
# Data Transfer Instructions
|
||||
#
|
||||
|
||||
%rd_d 4:4 !function=to_regs_00_30_by_two
|
||||
%rr_d 0:4 !function=to_regs_00_30_by_two
|
||||
|
||||
@io_rd_imm .... . .. ..... .... &rd_imm rd=%rd imm=%io_imm
|
||||
@ldst_d .. . . .. . rd:5 . ... &rd_imm imm=%ldst_d_imm
|
||||
|
||||
# The 16-bit immediate is completely in the next word.
|
||||
# Fields cannot be defined with no bits, so we cannot play
|
||||
# the same trick and append to a zero-bit value.
|
||||
# Defer reading the immediate until trans_{LDS,STS}.
|
||||
@ldst_s .... ... rd:5 .... imm=0
|
||||
|
||||
MOV 0010 11 . ..... .... @op_rd_rr
|
||||
MOVW 0000 0001 .... .... &rd_rr rd=%rd_d rr=%rr_d
|
||||
LDI 1110 .... .... .... @op_rd_imm8
|
||||
LDS 1001 000 ..... 0000 @ldst_s
|
||||
LDX1 1001 000 rd:5 1100
|
||||
LDX2 1001 000 rd:5 1101
|
||||
LDX3 1001 000 rd:5 1110
|
||||
LDY2 1001 000 rd:5 1001
|
||||
LDY3 1001 000 rd:5 1010
|
||||
LDZ2 1001 000 rd:5 0001
|
||||
LDZ3 1001 000 rd:5 0010
|
||||
LDDY 10 . 0 .. 0 ..... 1 ... @ldst_d
|
||||
LDDZ 10 . 0 .. 0 ..... 0 ... @ldst_d
|
||||
STS 1001 001 ..... 0000 @ldst_s
|
||||
STX1 1001 001 rr:5 1100
|
||||
STX2 1001 001 rr:5 1101
|
||||
STX3 1001 001 rr:5 1110
|
||||
STY2 1001 001 rd:5 1001
|
||||
STY3 1001 001 rd:5 1010
|
||||
STZ2 1001 001 rd:5 0001
|
||||
STZ3 1001 001 rd:5 0010
|
||||
STDY 10 . 0 .. 1 ..... 1 ... @ldst_d
|
||||
STDZ 10 . 0 .. 1 ..... 0 ... @ldst_d
|
||||
LPM1 1001 0101 1100 1000
|
||||
LPM2 1001 000 rd:5 0100
|
||||
LPMX 1001 000 rd:5 0101
|
||||
ELPM1 1001 0101 1101 1000
|
||||
ELPM2 1001 000 rd:5 0110
|
||||
ELPMX 1001 000 rd:5 0111
|
||||
SPM 1001 0101 1110 1000
|
||||
SPMX 1001 0101 1111 1000
|
||||
IN 1011 0 .. ..... .... @io_rd_imm
|
||||
OUT 1011 1 .. ..... .... @io_rd_imm
|
||||
PUSH 1001 001 rd:5 1111
|
||||
POP 1001 000 rd:5 1111
|
||||
XCH 1001 001 rd:5 0100
|
||||
LAC 1001 001 rd:5 0110
|
||||
LAS 1001 001 rd:5 0101
|
||||
LAT 1001 001 rd:5 0111
|
||||
|
@ -143,6 +143,10 @@ static int to_regs_24_30_by_two(DisasContext *ctx, int indx)
|
||||
return 24 + (indx % 4) * 2;
|
||||
}
|
||||
|
||||
static int to_regs_00_30_by_two(DisasContext *ctx, int indx)
|
||||
{
|
||||
return (indx % 16) * 2;
|
||||
}
|
||||
|
||||
static uint16_t next_word(DisasContext *ctx)
|
||||
{
|
||||
@ -1503,3 +1507,989 @@ static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
|
||||
ctx->bstate = DISAS_CHAIN;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Data Transfer Instructions
|
||||
*/
|
||||
|
||||
/*
|
||||
* in the gen_set_addr & gen_get_addr functions
|
||||
* H assumed to be in 0x00ff0000 format
|
||||
* M assumed to be in 0x000000ff format
|
||||
* L assumed to be in 0x000000ff format
|
||||
*/
|
||||
static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
|
||||
{
|
||||
|
||||
tcg_gen_andi_tl(L, addr, 0x000000ff);
|
||||
|
||||
tcg_gen_andi_tl(M, addr, 0x0000ff00);
|
||||
tcg_gen_shri_tl(M, M, 8);
|
||||
|
||||
tcg_gen_andi_tl(H, addr, 0x00ff0000);
|
||||
}
|
||||
|
||||
static void gen_set_xaddr(TCGv addr)
|
||||
{
|
||||
gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
|
||||
}
|
||||
|
||||
static void gen_set_yaddr(TCGv addr)
|
||||
{
|
||||
gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
|
||||
}
|
||||
|
||||
static void gen_set_zaddr(TCGv addr)
|
||||
{
|
||||
gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
|
||||
}
|
||||
|
||||
static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
|
||||
{
|
||||
TCGv addr = tcg_temp_new_i32();
|
||||
|
||||
tcg_gen_deposit_tl(addr, M, H, 8, 8);
|
||||
tcg_gen_deposit_tl(addr, L, addr, 8, 16);
|
||||
|
||||
return addr;
|
||||
}
|
||||
|
||||
static TCGv gen_get_xaddr(void)
|
||||
{
|
||||
return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
|
||||
}
|
||||
|
||||
static TCGv gen_get_yaddr(void)
|
||||
{
|
||||
return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
|
||||
}
|
||||
|
||||
static TCGv gen_get_zaddr(void)
|
||||
{
|
||||
return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Load one byte indirect from data space to register and stores an clear
|
||||
* the bits in data space specified by the register. The instruction can only
|
||||
* be used towards internal SRAM. The data location is pointed to by the Z (16
|
||||
* bits) Pointer Register in the Register File. Memory access is limited to the
|
||||
* current data segment of 64KB. To access another data segment in devices with
|
||||
* more than 64KB data space, the RAMPZ in register in the I/O area has to be
|
||||
* changed. The Z-pointer Register is left unchanged by the operation. This
|
||||
* instruction is especially suited for clearing status bits stored in SRAM.
|
||||
*/
|
||||
static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
|
||||
{
|
||||
if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
|
||||
gen_helper_fullwr(cpu_env, data, addr);
|
||||
} else {
|
||||
tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
|
||||
}
|
||||
}
|
||||
|
||||
static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
|
||||
{
|
||||
if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
|
||||
gen_helper_fullrd(data, cpu_env, addr);
|
||||
} else {
|
||||
tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This instruction makes a copy of one register into another. The source
|
||||
* register Rr is left unchanged, while the destination register Rd is loaded
|
||||
* with a copy of Rr.
|
||||
*/
|
||||
static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv Rr = cpu_r[a->rr];
|
||||
|
||||
tcg_gen_mov_tl(Rd, Rr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* This instruction makes a copy of one register pair into another register
|
||||
* pair. The source register pair Rr+1:Rr is left unchanged, while the
|
||||
* destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This
|
||||
* instruction is not available in all devices. Refer to the device specific
|
||||
* instruction set summary.
|
||||
*/
|
||||
static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv RdL = cpu_r[a->rd];
|
||||
TCGv RdH = cpu_r[a->rd + 1];
|
||||
TCGv RrL = cpu_r[a->rr];
|
||||
TCGv RrH = cpu_r[a->rr + 1];
|
||||
|
||||
tcg_gen_mov_tl(RdH, RrH);
|
||||
tcg_gen_mov_tl(RdL, RrL);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads an 8 bit constant directly to register 16 to 31.
|
||||
*/
|
||||
static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
int imm = a->imm;
|
||||
|
||||
tcg_gen_movi_tl(Rd, imm);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads one byte from the data space to a register. For parts with SRAM,
|
||||
* the data space consists of the Register File, I/O memory and internal SRAM
|
||||
* (and external SRAM if applicable). For parts without SRAM, the data space
|
||||
* consists of the register file only. The EEPROM has a separate address space.
|
||||
* A 16-bit address must be supplied. Memory access is limited to the current
|
||||
* data segment of 64KB. The LDS instruction uses the RAMPD Register to access
|
||||
* memory above 64KB. To access another data segment in devices with more than
|
||||
* 64KB data space, the RAMPD in register in the I/O area has to be changed.
|
||||
* This instruction is not available in all devices. Refer to the device
|
||||
* specific instruction set summary.
|
||||
*/
|
||||
static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = tcg_temp_new_i32();
|
||||
TCGv H = cpu_rampD;
|
||||
a->imm = next_word(ctx);
|
||||
|
||||
tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
|
||||
tcg_gen_shli_tl(addr, addr, 16);
|
||||
tcg_gen_ori_tl(addr, addr, a->imm);
|
||||
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads one byte indirect from the data space to a register. For parts
|
||||
* with SRAM, the data space consists of the Register File, I/O memory and
|
||||
* internal SRAM (and external SRAM if applicable). For parts without SRAM, the
|
||||
* data space consists of the Register File only. In some parts the Flash
|
||||
* Memory has been mapped to the data space and can be read using this command.
|
||||
* The EEPROM has a separate address space. The data location is pointed to by
|
||||
* the X (16 bits) Pointer Register in the Register File. Memory access is
|
||||
* limited to the current data segment of 64KB. To access another data segment
|
||||
* in devices with more than 64KB data space, the RAMPX in register in the I/O
|
||||
* area has to be changed. The X-pointer Register can either be left unchanged
|
||||
* by the operation, or it can be post-incremented or predecremented. These
|
||||
* features are especially suited for accessing arrays, tables, and Stack
|
||||
* Pointer usage of the X-pointer Register. Note that only the low byte of the
|
||||
* X-pointer is updated in devices with no more than 256 bytes data space. For
|
||||
* such devices, the high byte of the pointer is not used by this instruction
|
||||
* and can be used for other purposes. The RAMPX Register in the I/O area is
|
||||
* updated in parts with more than 64KB data space or more than 64KB Program
|
||||
* memory, and the increment/decrement is added to the entire 24-bit address on
|
||||
* such devices. Not all variants of this instruction is available in all
|
||||
* devices. Refer to the device specific instruction set summary. In the
|
||||
* Reduced Core tinyAVR the LD instruction can be used to achieve the same
|
||||
* operation as LPM since the program memory is mapped to the data memory
|
||||
* space.
|
||||
*/
|
||||
static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_xaddr();
|
||||
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_xaddr();
|
||||
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
|
||||
|
||||
gen_set_xaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_xaddr();
|
||||
|
||||
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
gen_set_xaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads one byte indirect with or without displacement from the data space
|
||||
* to a register. For parts with SRAM, the data space consists of the Register
|
||||
* File, I/O memory and internal SRAM (and external SRAM if applicable). For
|
||||
* parts without SRAM, the data space consists of the Register File only. In
|
||||
* some parts the Flash Memory has been mapped to the data space and can be
|
||||
* read using this command. The EEPROM has a separate address space. The data
|
||||
* location is pointed to by the Y (16 bits) Pointer Register in the Register
|
||||
* File. Memory access is limited to the current data segment of 64KB. To
|
||||
* access another data segment in devices with more than 64KB data space, the
|
||||
* RAMPY in register in the I/O area has to be changed. The Y-pointer Register
|
||||
* can either be left unchanged by the operation, or it can be post-incremented
|
||||
* or predecremented. These features are especially suited for accessing
|
||||
* arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
|
||||
* only the low byte of the Y-pointer is updated in devices with no more than
|
||||
* 256 bytes data space. For such devices, the high byte of the pointer is not
|
||||
* used by this instruction and can be used for other purposes. The RAMPY
|
||||
* Register in the I/O area is updated in parts with more than 64KB data space
|
||||
* or more than 64KB Program memory, and the increment/decrement/displacement
|
||||
* is added to the entire 24-bit address on such devices. Not all variants of
|
||||
* this instruction is available in all devices. Refer to the device specific
|
||||
* instruction set summary. In the Reduced Core tinyAVR the LD instruction can
|
||||
* be used to achieve the same operation as LPM since the program memory is
|
||||
* mapped to the data memory space.
|
||||
*/
|
||||
static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_yaddr();
|
||||
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
|
||||
|
||||
gen_set_yaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_yaddr();
|
||||
|
||||
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
gen_set_yaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_yaddr();
|
||||
|
||||
tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads one byte indirect with or without displacement from the data space
|
||||
* to a register. For parts with SRAM, the data space consists of the Register
|
||||
* File, I/O memory and internal SRAM (and external SRAM if applicable). For
|
||||
* parts without SRAM, the data space consists of the Register File only. In
|
||||
* some parts the Flash Memory has been mapped to the data space and can be
|
||||
* read using this command. The EEPROM has a separate address space. The data
|
||||
* location is pointed to by the Z (16 bits) Pointer Register in the Register
|
||||
* File. Memory access is limited to the current data segment of 64KB. To
|
||||
* access another data segment in devices with more than 64KB data space, the
|
||||
* RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
|
||||
* can either be left unchanged by the operation, or it can be post-incremented
|
||||
* or predecremented. These features are especially suited for Stack Pointer
|
||||
* usage of the Z-pointer Register, however because the Z-pointer Register can
|
||||
* be used for indirect subroutine calls, indirect jumps and table lookup, it
|
||||
* is often more convenient to use the X or Y-pointer as a dedicated Stack
|
||||
* Pointer. Note that only the low byte of the Z-pointer is updated in devices
|
||||
* with no more than 256 bytes data space. For such devices, the high byte of
|
||||
* the pointer is not used by this instruction and can be used for other
|
||||
* purposes. The RAMPZ Register in the I/O area is updated in parts with more
|
||||
* than 64KB data space or more than 64KB Program memory, and the
|
||||
* increment/decrement/displacement is added to the entire 24-bit address on
|
||||
* such devices. Not all variants of this instruction is available in all
|
||||
* devices. Refer to the device specific instruction set summary. In the
|
||||
* Reduced Core tinyAVR the LD instruction can be used to achieve the same
|
||||
* operation as LPM since the program memory is mapped to the data memory
|
||||
* space. For using the Z-pointer for table lookup in Program memory see the
|
||||
* LPM and ELPM instructions.
|
||||
*/
|
||||
static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
|
||||
|
||||
gen_set_zaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
|
||||
gen_set_zaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
|
||||
gen_data_load(ctx, Rd, addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stores one byte from a Register to the data space. For parts with SRAM,
|
||||
* the data space consists of the Register File, I/O memory and internal SRAM
|
||||
* (and external SRAM if applicable). For parts without SRAM, the data space
|
||||
* consists of the Register File only. The EEPROM has a separate address space.
|
||||
* A 16-bit address must be supplied. Memory access is limited to the current
|
||||
* data segment of 64KB. The STS instruction uses the RAMPD Register to access
|
||||
* memory above 64KB. To access another data segment in devices with more than
|
||||
* 64KB data space, the RAMPD in register in the I/O area has to be changed.
|
||||
* This instruction is not available in all devices. Refer to the device
|
||||
* specific instruction set summary.
|
||||
*/
|
||||
static bool trans_STS(DisasContext *ctx, arg_STS *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = tcg_temp_new_i32();
|
||||
TCGv H = cpu_rampD;
|
||||
a->imm = next_word(ctx);
|
||||
|
||||
tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
|
||||
tcg_gen_shli_tl(addr, addr, 16);
|
||||
tcg_gen_ori_tl(addr, addr, a->imm);
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stores one byte indirect from a register to data space. For parts with SRAM,
|
||||
* the data space consists of the Register File, I/O memory, and internal SRAM
|
||||
* (and external SRAM if applicable). For parts without SRAM, the data space
|
||||
* consists of the Register File only. The EEPROM has a separate address space.
|
||||
*
|
||||
* The data location is pointed to by the X (16 bits) Pointer Register in the
|
||||
* Register File. Memory access is limited to the current data segment of 64KB.
|
||||
* To access another data segment in devices with more than 64KB data space, the
|
||||
* RAMPX in register in the I/O area has to be changed.
|
||||
*
|
||||
* The X-pointer Register can either be left unchanged by the operation, or it
|
||||
* can be post-incremented or pre-decremented. These features are especially
|
||||
* suited for accessing arrays, tables, and Stack Pointer usage of the
|
||||
* X-pointer Register. Note that only the low byte of the X-pointer is updated
|
||||
* in devices with no more than 256 bytes data space. For such devices, the high
|
||||
* byte of the pointer is not used by this instruction and can be used for other
|
||||
* purposes. The RAMPX Register in the I/O area is updated in parts with more
|
||||
* than 64KB data space or more than 64KB Program memory, and the increment /
|
||||
* decrement is added to the entire 24-bit address on such devices.
|
||||
*/
|
||||
static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rr];
|
||||
TCGv addr = gen_get_xaddr();
|
||||
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rr];
|
||||
TCGv addr = gen_get_xaddr();
|
||||
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
|
||||
gen_set_xaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rr];
|
||||
TCGv addr = gen_get_xaddr();
|
||||
|
||||
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
gen_set_xaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stores one byte indirect with or without displacement from a register to data
|
||||
* space. For parts with SRAM, the data space consists of the Register File, I/O
|
||||
* memory, and internal SRAM (and external SRAM if applicable). For parts
|
||||
* without SRAM, the data space consists of the Register File only. The EEPROM
|
||||
* has a separate address space.
|
||||
*
|
||||
* The data location is pointed to by the Y (16 bits) Pointer Register in the
|
||||
* Register File. Memory access is limited to the current data segment of 64KB.
|
||||
* To access another data segment in devices with more than 64KB data space, the
|
||||
* RAMPY in register in the I/O area has to be changed.
|
||||
*
|
||||
* The Y-pointer Register can either be left unchanged by the operation, or it
|
||||
* can be post-incremented or pre-decremented. These features are especially
|
||||
* suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
|
||||
* Register. Note that only the low byte of the Y-pointer is updated in devices
|
||||
* with no more than 256 bytes data space. For such devices, the high byte of
|
||||
* the pointer is not used by this instruction and can be used for other
|
||||
* purposes. The RAMPY Register in the I/O area is updated in parts with more
|
||||
* than 64KB data space or more than 64KB Program memory, and the increment /
|
||||
* decrement / displacement is added to the entire 24-bit address on such
|
||||
* devices.
|
||||
*/
|
||||
static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_yaddr();
|
||||
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
|
||||
gen_set_yaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_yaddr();
|
||||
|
||||
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
gen_set_yaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_yaddr();
|
||||
|
||||
tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stores one byte indirect with or without displacement from a register to data
|
||||
* space. For parts with SRAM, the data space consists of the Register File, I/O
|
||||
* memory, and internal SRAM (and external SRAM if applicable). For parts
|
||||
* without SRAM, the data space consists of the Register File only. The EEPROM
|
||||
* has a separate address space.
|
||||
*
|
||||
* The data location is pointed to by the Y (16 bits) Pointer Register in the
|
||||
* Register File. Memory access is limited to the current data segment of 64KB.
|
||||
* To access another data segment in devices with more than 64KB data space, the
|
||||
* RAMPY in register in the I/O area has to be changed.
|
||||
*
|
||||
* The Y-pointer Register can either be left unchanged by the operation, or it
|
||||
* can be post-incremented or pre-decremented. These features are especially
|
||||
* suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
|
||||
* Register. Note that only the low byte of the Y-pointer is updated in devices
|
||||
* with no more than 256 bytes data space. For such devices, the high byte of
|
||||
* the pointer is not used by this instruction and can be used for other
|
||||
* purposes. The RAMPY Register in the I/O area is updated in parts with more
|
||||
* than 64KB data space or more than 64KB Program memory, and the increment /
|
||||
* decrement / displacement is added to the entire 24-bit address on such
|
||||
* devices.
|
||||
*/
|
||||
static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
|
||||
|
||||
gen_set_zaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
|
||||
gen_set_zaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads one byte pointed to by the Z-register into the destination
|
||||
* register Rd. This instruction features a 100% space effective constant
|
||||
* initialization or constant data fetch. The Program memory is organized in
|
||||
* 16-bit words while the Z-pointer is a byte address. Thus, the least
|
||||
* significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
|
||||
* byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
|
||||
* Program memory. The Zpointer Register can either be left unchanged by the
|
||||
* operation, or it can be incremented. The incrementation does not apply to
|
||||
* the RAMPZ Register.
|
||||
*
|
||||
* Devices with Self-Programming capability can use the LPM instruction to read
|
||||
* the Fuse and Lock bit values.
|
||||
*/
|
||||
static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rd = cpu_r[0];
|
||||
TCGv addr = tcg_temp_new_i32();
|
||||
TCGv H = cpu_r[31];
|
||||
TCGv L = cpu_r[30];
|
||||
|
||||
tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
|
||||
tcg_gen_or_tl(addr, addr, L);
|
||||
tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = tcg_temp_new_i32();
|
||||
TCGv H = cpu_r[31];
|
||||
TCGv L = cpu_r[30];
|
||||
|
||||
tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
|
||||
tcg_gen_or_tl(addr, addr, L);
|
||||
tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = tcg_temp_new_i32();
|
||||
TCGv H = cpu_r[31];
|
||||
TCGv L = cpu_r[30];
|
||||
|
||||
tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
|
||||
tcg_gen_or_tl(addr, addr, L);
|
||||
tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
|
||||
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
|
||||
tcg_gen_andi_tl(L, addr, 0xff);
|
||||
tcg_gen_shri_tl(addr, addr, 8);
|
||||
tcg_gen_andi_tl(H, addr, 0xff);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads one byte pointed to by the Z-register and the RAMPZ Register in
|
||||
* the I/O space, and places this byte in the destination register Rd. This
|
||||
* instruction features a 100% space effective constant initialization or
|
||||
* constant data fetch. The Program memory is organized in 16-bit words while
|
||||
* the Z-pointer is a byte address. Thus, the least significant bit of the
|
||||
* Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
|
||||
* instruction can address the entire Program memory space. The Z-pointer
|
||||
* Register can either be left unchanged by the operation, or it can be
|
||||
* incremented. The incrementation applies to the entire 24-bit concatenation
|
||||
* of the RAMPZ and Z-pointer Registers.
|
||||
*
|
||||
* Devices with Self-Programming capability can use the ELPM instruction to
|
||||
* read the Fuse and Lock bit value.
|
||||
*/
|
||||
static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rd = cpu_r[0];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
|
||||
tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
|
||||
gen_set_zaddr(addr);
|
||||
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* SPM can be used to erase a page in the Program memory, to write a page
|
||||
* in the Program memory (that is already erased), and to set Boot Loader Lock
|
||||
* bits. In some devices, the Program memory can be written one word at a time,
|
||||
* in other devices an entire page can be programmed simultaneously after first
|
||||
* filling a temporary page buffer. In all cases, the Program memory must be
|
||||
* erased one page at a time. When erasing the Program memory, the RAMPZ and
|
||||
* Z-register are used as page address. When writing the Program memory, the
|
||||
* RAMPZ and Z-register are used as page or word address, and the R1:R0
|
||||
* register pair is used as data(1). When setting the Boot Loader Lock bits,
|
||||
* the R1:R0 register pair is used as data. Refer to the device documentation
|
||||
* for detailed description of SPM usage. This instruction can address the
|
||||
* entire Program memory.
|
||||
*
|
||||
* The SPM instruction is not available in all devices. Refer to the device
|
||||
* specific instruction set summary.
|
||||
*
|
||||
* Note: 1. R1 determines the instruction high byte, and R0 determines the
|
||||
* instruction low byte.
|
||||
*/
|
||||
static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
|
||||
{
|
||||
/* TODO */
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
|
||||
{
|
||||
/* TODO */
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads data from the I/O Space (Ports, Timers, Configuration Registers,
|
||||
* etc.) into register Rd in the Register File.
|
||||
*/
|
||||
static bool trans_IN(DisasContext *ctx, arg_IN *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv port = tcg_const_i32(a->imm);
|
||||
|
||||
gen_helper_inb(Rd, cpu_env, port);
|
||||
|
||||
tcg_temp_free_i32(port);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stores data from register Rr in the Register File to I/O Space (Ports,
|
||||
* Timers, Configuration Registers, etc.).
|
||||
*/
|
||||
static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv port = tcg_const_i32(a->imm);
|
||||
|
||||
gen_helper_outb(cpu_env, port, Rd);
|
||||
|
||||
tcg_temp_free_i32(port);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* This instruction stores the contents of register Rr on the STACK. The
|
||||
* Stack Pointer is post-decremented by 1 after the PUSH. This instruction is
|
||||
* not available in all devices. Refer to the device specific instruction set
|
||||
* summary.
|
||||
*/
|
||||
static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
|
||||
{
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
|
||||
gen_data_store(ctx, Rd, cpu_sp);
|
||||
tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* This instruction loads register Rd with a byte from the STACK. The Stack
|
||||
* Pointer is pre-incremented by 1 before the POP. This instruction is not
|
||||
* available in all devices. Refer to the device specific instruction set
|
||||
* summary.
|
||||
*/
|
||||
static bool trans_POP(DisasContext *ctx, arg_POP *a)
|
||||
{
|
||||
/*
|
||||
* Using a temp to work around some strange behaviour:
|
||||
* tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
|
||||
* gen_data_load(ctx, Rd, cpu_sp);
|
||||
* seems to cause the add to happen twice.
|
||||
* This doesn't happen if either the add or the load is removed.
|
||||
*/
|
||||
TCGv t1 = tcg_temp_new_i32();
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
|
||||
tcg_gen_addi_tl(t1, cpu_sp, 1);
|
||||
gen_data_load(ctx, Rd, t1);
|
||||
tcg_gen_mov_tl(cpu_sp, t1);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Exchanges one byte indirect between register and data space. The data
|
||||
* location is pointed to by the Z (16 bits) Pointer Register in the Register
|
||||
* File. Memory access is limited to the current data segment of 64KB. To
|
||||
* access another data segment in devices with more than 64KB data space, the
|
||||
* RAMPZ in register in the I/O area has to be changed.
|
||||
*
|
||||
* The Z-pointer Register is left unchanged by the operation. This instruction
|
||||
* is especially suited for writing/reading status bits stored in SRAM.
|
||||
*/
|
||||
static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv t0 = tcg_temp_new_i32();
|
||||
TCGv addr = gen_get_zaddr();
|
||||
|
||||
gen_data_load(ctx, t0, addr);
|
||||
gen_data_store(ctx, Rd, addr);
|
||||
tcg_gen_mov_tl(Rd, t0);
|
||||
|
||||
tcg_temp_free_i32(t0);
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Load one byte indirect from data space to register and set bits in data
|
||||
* space specified by the register. The instruction can only be used towards
|
||||
* internal SRAM. The data location is pointed to by the Z (16 bits) Pointer
|
||||
* Register in the Register File. Memory access is limited to the current data
|
||||
* segment of 64KB. To access another data segment in devices with more than
|
||||
* 64KB data space, the RAMPZ in register in the I/O area has to be changed.
|
||||
*
|
||||
* The Z-pointer Register is left unchanged by the operation. This instruction
|
||||
* is especially suited for setting status bits stored in SRAM.
|
||||
*/
|
||||
static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rr = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
TCGv t0 = tcg_temp_new_i32();
|
||||
TCGv t1 = tcg_temp_new_i32();
|
||||
|
||||
gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
|
||||
tcg_gen_or_tl(t1, t0, Rr);
|
||||
tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
|
||||
gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
|
||||
|
||||
tcg_temp_free_i32(t1);
|
||||
tcg_temp_free_i32(t0);
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Load one byte indirect from data space to register and stores and clear
|
||||
* the bits in data space specified by the register. The instruction can
|
||||
* only be used towards internal SRAM. The data location is pointed to by
|
||||
* the Z (16 bits) Pointer Register in the Register File. Memory access is
|
||||
* limited to the current data segment of 64KB. To access another data
|
||||
* segment in devices with more than 64KB data space, the RAMPZ in register
|
||||
* in the I/O area has to be changed.
|
||||
*
|
||||
* The Z-pointer Register is left unchanged by the operation. This instruction
|
||||
* is especially suited for clearing status bits stored in SRAM.
|
||||
*/
|
||||
static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rr = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
TCGv t0 = tcg_temp_new_i32();
|
||||
TCGv t1 = tcg_temp_new_i32();
|
||||
|
||||
gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
|
||||
tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */
|
||||
tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
|
||||
gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
|
||||
|
||||
tcg_temp_free_i32(t1);
|
||||
tcg_temp_free_i32(t0);
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Load one byte indirect from data space to register and toggles bits in
|
||||
* the data space specified by the register. The instruction can only be used
|
||||
* towards SRAM. The data location is pointed to by the Z (16 bits) Pointer
|
||||
* Register in the Register File. Memory access is limited to the current data
|
||||
* segment of 64KB. To access another data segment in devices with more than
|
||||
* 64KB data space, the RAMPZ in register in the I/O area has to be changed.
|
||||
*
|
||||
* The Z-pointer Register is left unchanged by the operation. This instruction
|
||||
* is especially suited for changing status bits stored in SRAM.
|
||||
*/
|
||||
static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
|
||||
{
|
||||
if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
TCGv Rd = cpu_r[a->rd];
|
||||
TCGv addr = gen_get_zaddr();
|
||||
TCGv t0 = tcg_temp_new_i32();
|
||||
TCGv t1 = tcg_temp_new_i32();
|
||||
|
||||
gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
|
||||
tcg_gen_xor_tl(t1, t0, Rd);
|
||||
tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
|
||||
gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
|
||||
|
||||
tcg_temp_free_i32(t1);
|
||||
tcg_temp_free_i32(t0);
|
||||
tcg_temp_free_i32(addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user