Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the vmdk block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the vhdx block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the vdi block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the rbd block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the raw-win32 block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the raw-posix block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the qed block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the qcow2 block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the qcow1 block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the parallels block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the nfs block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the iscsi block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Reviewed-by: Eric Blake <eblake@redhat.com>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the dmg block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the curl block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the cloop block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses the allocations in the bochs block driver.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Some code in the block layer makes potentially huge allocations. Failure
is not completely unexpected there, so avoid aborting qemu and handle
out-of-memory situations gracefully.
This patch addresses bounce buffer allocations in block.c. While at it,
convert bdrv_commit() from plain g_malloc() to qemu_try_blockalign().
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
This function returns NULL instead of aborting when an allocation fails.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
This updates the VDI corruption test to also test static VDI image
creation, as well as the default dynamic image creation.
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Jeff Cody <jcody@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Use the block layer to create, and write to, the image file in the VPC
.bdrv_create() operation.
This has a couple of benefits: Images can now be created over protocols,
and hacks such as NOCOW are not needed in the image format driver, and
the underlying file protocol appropriate for the host OS can be relied
upon.
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Jeff Cody <jcody@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Most QEMU code uses 'ret' for function return values. The VDI driver
uses a mix of 'result' and 'ret'. This cleans that up, switching over
to the standard 'ret' usage.
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Jeff Cody <jcody@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Use the block layer to create, and write to, the image file in the
VDI .bdrv_create() operation.
This has a couple of benefits: Images can now be created over protocols,
and hacks such as NOCOW are not needed in the image format driver, and
the underlying file protocol appropriate for the host OS can be relied
upon.
Also some minor cleanup for error handling.
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Jeff Cody <jcody@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
If bdrv_unref() is passed a NULL BDS pointer, it is safe to
exit with no operation. This will allow cleanup code to blindly
call bdrv_unref() on a BDS that has been initialized to NULL.
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Jeff Cody <jcody@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This can be used to compute the cost of coroutine operations. In the
end the cost of the function call is a few clock cycles, so it's pretty
cheap for now, but it may become more relevant as the coroutine code
is optimized.
For example, here are the results on my machine:
Function call 100000000 iterations: 0.173884 s
Yield 100000000 iterations: 8.445064 s
Lifecycle 1000000 iterations: 0.098445 s
Nesting 10000 iterations of 1000 depth each: 7.406431 s
One yield takes 83 nanoseconds, one enter takes 97 nanoseconds,
one coroutine allocation takes (roughly, since some of the allocations
in the nesting test do hit the pool) 739 nanoseconds:
(8.445064 - 0.173884) * 10^9 / 100000000 = 82.7
(0.098445 * 100 - 0.173884) * 10^9 / 100000000 = 96.7
(7.406431 * 10 - 0.173884) * 10^9 / 100000000 = 738.9
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This patch contains several changes for endian conversion fixes for
VHDX, particularly for big-endian machines (multibyte values in VHDX are
all on disk in LE format).
Tests were done with existing qemu-iotests on an IBM POWER7 (8406-71Y).
This includes sample images created by Hyper-V, both with dirty logs and
without.
In addition, VHDX image files created (and written to) on a BE machine
were tested on a LE machine, and vice-versa.
Reported-by: Markus Armburster <armbru@redhat.com>
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jeff Cody <jcody@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This add an error check for an invalid descriptor entry signature,
when flushing the log descriptor entries.
Signed-off-by: Jeff Cody <jcody@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
The thread pool has a race condition if two elements complete before
thread_pool_completion_bh() runs:
If element A's callback waits for element B using aio_poll() it will
deadlock since pool->completion_bh is not marked scheduled when the
nested aio_poll() runs.
Fix this by marking the BH scheduled while thread_pool_completion_bh()
is executing. This way any nested aio_poll() loops will enter
thread_pool_completion_bh() and complete the remaining elements.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
EventNotifier is implemented using an eventfd or pipe. It therefore
consumes file descriptors, which can be limited by rlimits and should
therefore be used sparingly.
Switch from EventNotifier to QEMUBH in thread-pool.c. Originally
EventNotifier was used because qemu_bh_schedule() was not thread-safe
yet.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
When a BlockDriverState is associated with a storage controller
DeviceState we expect guest I/O. Use this opportunity to bump the
coroutine pool size by 64.
This patch ensures that the coroutine pool size scales with the number
of drives attached to the guest. It should increase coroutine pool
usage (which makes qemu_coroutine_create() fast) without hogging too
much memory when fewer drives are attached.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Allow coroutine users to adjust the pool size. For example, if the
guest has multiple emulated disk drives we should keep around more
coroutines.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Introduce new enum BlockdevOptionsArchipelago.
@volume: #Name of the Archipelago volume image
@mport: #'mport' is the port number on which mapperd is
listening. This is optional and if not specified,
QEMU will make Archipelago to use the default port.
@vport: #'vport' is the port number on which vlmcd is
listening. This is optional and if not specified,
QEMU will make Archipelago to use the default port.
@segment: #optional The name of the shared memory segment
Archipelago stack is using. This is optional
and if not specified, QEMU will make Archipelago
use the default value, 'archipelago'.
Signed-off-by: Chrysostomos Nanakos <cnanakos@grnet.gr>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
VM Image on Archipelago volume can also be specified like this:
file=archipelago:<volumename>[/mport=<mapperd_port>[:vport=<vlmcd_port>][:
segment=<segment_name>]]
Examples:
file=archipelago:my_vm_volume
file=archipelago:my_vm_volume/mport=123
file=archipelago:my_vm_volume/mport=123:vport=1234
file=archipelago:my_vm_volume/mport=123:vport=1234:segment=my_segment
Signed-off-by: Chrysostomos Nanakos <cnanakos@grnet.gr>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
VM Image on Archipelago volume is specified like this:
file.driver=archipelago,file.volume=<volumename>[,file.mport=<mapperd_port>[,
file.vport=<vlmcd_port>][,file.segment=<segment_name>]]
'archipelago' is the protocol.
'mport' is the port number on which mapperd is listening. This is optional
and if not specified, QEMU will make Archipelago to use the default port.
'vport' is the port number on which vlmcd is listening. This is optional
and if not specified, QEMU will make Archipelago to use the default port.
'segment' is the name of the shared memory segment Archipelago stack is using.
This is optional and if not specified, QEMU will make Archipelago to use the
default value, 'archipelago'.
Examples:
file.driver=archipelago,file.volume=my_vm_volume
file.driver=archipelago,file.volume=my_vm_volume,file.mport=123
file.driver=archipelago,file.volume=my_vm_volume,file.mport=123,
file.vport=1234
file.driver=archipelago,file.volume=my_vm_volume,file.mport=123,
file.vport=1234,file.segment=my_segment
Signed-off-by: Chrysostomos Nanakos <cnanakos@grnet.gr>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Add nocow info in 'qemu-img info' output to show whether the file
currently has NOCOW flag set or not.
Signed-off-by: Chunyan Liu <cyliu@suse.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This drops the unnecessary bdrv_truncate() from, and also improves,
cluster allocation code path.
Before, when we need a new cluster, get_cluster_offset truncates the
image to bdrv_getlength() + cluster_size, and returns the offset of
added area, i.e. the image length before truncating.
This is not efficient, so it's now rewritten as:
- Save the extent file length when opening.
- When allocating cluster, use the saved length as cluster offset.
- Don't truncate image, because we'll anyway write data there: just
write any data at the EOF position, in descending priority:
* New user data (cluster allocation happens in a write request).
* Filling data in the beginning and/or ending of the new cluster, if
not covered by user data: either backing file content (COW), or
zero for standalone images.
One major benifit of this change is, on host mounted NFS images, even
over a fast network, ftruncate is slow (see the example below). This
change significantly speeds up cluster allocation. Comparing by
converting a cirros image (296M) to VMDK on an NFS mount point, over
1Gbe LAN:
$ time qemu-img convert cirros-0.3.1.img /mnt/a.raw -O vmdk
Before:
real 0m21.796s
user 0m0.130s
sys 0m0.483s
After:
real 0m2.017s
user 0m0.047s
sys 0m0.190s
We also get rid of unchecked bdrv_getlength() and bdrv_truncate(), and
get a little more documentation in function comments.
Tested that this passes qemu-iotests for all VMDK subformats.
Signed-off-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
It's possible that we diverge from the specification with our
implementation. Having a reference image in the test cases may detect
such problems when we introduce a bug that can read what it creates, but
can't handle a real VMDK.
Signed-off-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Update -device FOO,help to include QOM properties in addition to qdev
properties. Devices are gradually adding more QOM properties that are
not reflected as qdev properties.
It is important to report all device properties since management tools
like libvirt use this information (and device-list-properties QMP) to
detect the presence of QEMU features.
This patch reuses the device-list-properties QMP machinery to avoid code
duplication.
Reported-by: Cole Robinson <crobinso@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Tested-by: Cole Robinson <crobinso@redhat.com>
The "hotplugged" device property was not reported before commit
f4eb32b590 ("qmp: show QOM properties in
device-list-properties"). Fix this difference.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
This document explains how IOThreads and the main loop are related,
especially how to write code that can run in an IOThread. Currently
only virtio-blk-data-plane uses these techniques. The next obvious
target is virtio-scsi; there has also been work on virtio-net.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
The current version of the qcow2 specification recommends to save the backing
file name in the end of the first cluster. It follows that the backing file
name can be saved somewhere in the image, but the first cluster, which
contradicts the current QEMU implementation.
The patch makes the backing file name required to be placed after the header
extensions in the first image cluster.
Signed-off-by: Maria Kustova <maria.k@catit.be>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
bdrv_get_geometry() hides errors. Use bdrv_nb_sectors() or
bdrv_getlength() instead where that's obviously inappropriate.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Chiefly so I don't have to do the error checking in quadruplicate in
the next commit. Moreover, replacing the frequently updated
bs_sectors by an array assigned just once makes the code easier to
understand.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
It returns a multiple of the sector size.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Instead of bdrv_getlength().
Aside: a few of these callers don't handle errors. I didn't
investigate whether they should.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Instead of bdrv_getlength(). Replace variable output_length by
output_sectors.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Instead of bdrv_getlength().
Replace variables length, length2 by total_sectors, nb_sectors2.
Bonus: use total_sectors instead of the slightly unclean
bs->total_sectors.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Benoit Canet <benoit@irqsave.net>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>