This was done in a mostly automated fashion. I did it in three steps and then
rebased it into a single step which avoids repeatedly touching every file in
the tree.
The first step was a sed-based addition of the parent type to the subclass
registration functions.
The second step was another sed-based removal of subclass registration functions
while also adding virtual functions from the base class into a class_init
function as appropriate.
Finally, a python script was used to convert the DeviceInfo structures and
qdev_register_subclass functions to TypeInfo structures, class_init functions,
and type_register_static calls.
We are almost fully converted to QOM after this commit.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This converts three devices because apic and ioapic are subclasses of sysbus.
Converting subclasses independently of their base class is prohibitively hard.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This converts two devices at once because PIC subclasses ISA and converting
subclasses independently is extremely hard.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This introduces the KVM-accelerated IOAPIC model 'kvm-ioapic' and
extends the IRQ routing setup by the 0->2 redirection when needed.
The kvm-ioapic model has a property that allows to define its GSI base
for injecting interrupts into the kernel model. This will allow to
disentangle PIC and IOAPIC pins for chipsets that support more
sophisticated IRQ routes than the PIIX3. So far the base is kept at 0,
i.e. PIC and IOAPIC share pins 0..15.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Introduce the alternative 'kvm-i8259' device model that exploits KVM
in-kernel acceleration.
The PIIX3 initialization code is furthermore extended by KVM specific
IRQ route setup. GSI injection differs in KVM mode from the user space
model. As we can dispatch ISA-range IRQs to both IOAPIC and PIC inside
the kernel, we do not need to inject them separately. This is reflected
by a KVM-specific GSI handler.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
This introduces the alternative APIC device which makes use of KVM's
in-kernel device model. External NMI injection via LINT1 is emulated by
checking the current state of the in-kernel APIC, only injecting a NMI
into the VCPU if LINT1 is unmasked and configured to DM_NMI.
MSI is not yet supported, so we disable this when the in-kernel model is
in use.
CC: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
More KVM-specific devices will come, so let's start with moving the
kvmclock into a dedicated folder.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>