Eric Blake 6e280648d2 nbd/server: Trace client noncompliance on unaligned requests
We've recently added traces for clients to flag server non-compliance;
let's do the same for servers to flag client non-compliance. According
to the spec, if the client requests NBD_INFO_BLOCK_SIZE, it is
promising to send all requests aligned to those boundaries.  Of
course, if the client does not request NBD_INFO_BLOCK_SIZE, then it
made no promises so we shouldn't flag anything; and because we are
willing to handle clients that made no promises (the spec allows us to
use NBD_REP_ERR_BLOCK_SIZE_REQD if we had been unwilling), we already
have to handle unaligned requests (which the block layer already does
on our behalf).  So even though the spec allows us to return EINVAL
for clients that promised to behave, it's easier to always answer
unaligned requests.  Still, flagging non-compliance can be useful in
debugging a client that is trying to be maximally portable.

Qemu as client used to have one spot where it sent non-compliant
requests: if the server sends an unaligned reply to
NBD_CMD_BLOCK_STATUS, and the client was iterating over the entire
disk, the next request would start at that unaligned point; this was
fixed in commit a39286dd when the client was taught to work around
server non-compliance; but is equally fixed if the server is patched
to not send unaligned replies in the first place (yes, qemu 4.0 as
server still has few such bugs, although they will be patched in
4.1). Fortunately, I did not find any more spots where qemu as client
was non-compliant. I was able to test the patch by using the following
hack to convince qemu-io to run various unaligned commands, coupled
with serving 512-byte alignment by intentionally omitting '-f raw' on
the server while viewing server traces.

| diff --git i/nbd/client.c w/nbd/client.c
| index 427980bdd22..1858b2aac35 100644
| --- i/nbd/client.c
| +++ w/nbd/client.c
| @@ -449,6 +449,7 @@ static int nbd_opt_info_or_go(QIOChannel *ioc, uint32_t opt,
|                  nbd_send_opt_abort(ioc);
|                  return -1;
|              }
| +            info->min_block = 1;//hack
|              if (!is_power_of_2(info->min_block)) {
|                  error_setg(errp, "server minimum block size %" PRIu32
|                             " is not a power of two", info->min_block);

Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20190403030526.12258-3-eblake@redhat.com>
[eblake: address minor review nits]
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
2019-04-08 13:42:24 -05:00
2019-04-02 13:50:09 +02:00
2019-03-19 05:13:24 -07:00
2019-04-07 14:54:55 +01:00
2019-04-07 14:54:55 +01:00
2019-03-29 15:22:18 +08:00
2019-03-25 13:37:18 -07:00
2019-03-07 16:16:02 +00:00
2019-03-18 10:48:06 -05:00
2019-03-25 13:37:18 -07:00
2019-02-21 10:22:24 -08:00
2018-12-11 18:35:54 +01:00
2019-03-25 10:34:38 +00:00
2018-12-26 06:40:02 +11:00
2019-02-06 15:51:12 +01:00
2019-03-05 11:27:41 +08:00
2019-04-05 15:32:13 +01:00
2019-03-13 17:30:34 +00:00
2019-03-07 21:45:53 +01:00
2019-04-02 17:01:20 +01:00

         QEMU README
         ===========

QEMU is a generic and open source machine & userspace emulator and
virtualizer.

QEMU is capable of emulating a complete machine in software without any
need for hardware virtualization support. By using dynamic translation,
it achieves very good performance. QEMU can also integrate with the Xen
and KVM hypervisors to provide emulated hardware while allowing the
hypervisor to manage the CPU. With hypervisor support, QEMU can achieve
near native performance for CPUs. When QEMU emulates CPUs directly it is
capable of running operating systems made for one machine (e.g. an ARMv7
board) on a different machine (e.g. an x86_64 PC board).

QEMU is also capable of providing userspace API virtualization for Linux
and BSD kernel interfaces. This allows binaries compiled against one
architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a
different architecture ABI (e.g. the Linux x86_64 ABI). This does not
involve any hardware emulation, simply CPU and syscall emulation.

QEMU aims to fit into a variety of use cases. It can be invoked directly
by users wishing to have full control over its behaviour and settings.
It also aims to facilitate integration into higher level management
layers, by providing a stable command line interface and monitor API.
It is commonly invoked indirectly via the libvirt library when using
open source applications such as oVirt, OpenStack and virt-manager.

QEMU as a whole is released under the GNU General Public License,
version 2. For full licensing details, consult the LICENSE file.


Building
========

QEMU is multi-platform software intended to be buildable on all modern
Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety
of other UNIX targets. The simple steps to build QEMU are:

  mkdir build
  cd build
  ../configure
  make

Additional information can also be found online via the QEMU website:

  https://qemu.org/Hosts/Linux
  https://qemu.org/Hosts/Mac
  https://qemu.org/Hosts/W32


Submitting patches
==================

The QEMU source code is maintained under the GIT version control system.

   git clone https://git.qemu.org/git/qemu.git

When submitting patches, one common approach is to use 'git
format-patch' and/or 'git send-email' to format & send the mail to the
qemu-devel@nongnu.org mailing list. All patches submitted must contain
a 'Signed-off-by' line from the author. Patches should follow the
guidelines set out in the HACKING and CODING_STYLE files.

Additional information on submitting patches can be found online via
the QEMU website

  https://qemu.org/Contribute/SubmitAPatch
  https://qemu.org/Contribute/TrivialPatches

The QEMU website is also maintained under source control.

  git clone https://git.qemu.org/git/qemu-web.git
  https://www.qemu.org/2017/02/04/the-new-qemu-website-is-up/

A 'git-publish' utility was created to make above process less
cumbersome, and is highly recommended for making regular contributions,
or even just for sending consecutive patch series revisions. It also
requires a working 'git send-email' setup, and by default doesn't
automate everything, so you may want to go through the above steps
manually for once.

For installation instructions, please go to

  https://github.com/stefanha/git-publish

The workflow with 'git-publish' is:

  $ git checkout master -b my-feature
  $ # work on new commits, add your 'Signed-off-by' lines to each
  $ git publish

Your patch series will be sent and tagged as my-feature-v1 if you need to refer
back to it in the future.

Sending v2:

  $ git checkout my-feature # same topic branch
  $ # making changes to the commits (using 'git rebase', for example)
  $ git publish

Your patch series will be sent with 'v2' tag in the subject and the git tip
will be tagged as my-feature-v2.

Bug reporting
=============

The QEMU project uses Launchpad as its primary upstream bug tracker. Bugs
found when running code built from QEMU git or upstream released sources
should be reported via:

  https://bugs.launchpad.net/qemu/

If using QEMU via an operating system vendor pre-built binary package, it
is preferable to report bugs to the vendor's own bug tracker first. If
the bug is also known to affect latest upstream code, it can also be
reported via launchpad.

For additional information on bug reporting consult:

  https://qemu.org/Contribute/ReportABug


Contact
=======

The QEMU community can be contacted in a number of ways, with the two
main methods being email and IRC

 - qemu-devel@nongnu.org
   https://lists.nongnu.org/mailman/listinfo/qemu-devel
 - #qemu on irc.oftc.net

Information on additional methods of contacting the community can be
found online via the QEMU website:

  https://qemu.org/Contribute/StartHere

-- End
Description
Original Xbox Emulator for Windows, macOS, and Linux (Active Development)
Readme 531 MiB
Languages
C 82.5%
C++ 7%
Python 3.3%
Dylan 2.8%
Shell 1.5%
Other 2.6%