A new platform define, `PLAT_SP_IMAGE_XLAT_SECTION_NAME`, has been
introduced to select the section where the translation tables used by
the S-EL1/S-EL0 are placed.
This define has been used to move the translation tables to DRAM secured
by TrustZone.
Most of the extra needed space in BL31 when SPM is enabled is due to the
large size of the translation tables. By moving them to this memory
region we can save 44 KiB.
A new argument has been added to REGISTER_XLAT_CONTEXT2() to specify the
region where the translation tables have to be placed by the linker.
Change-Id: Ia81709b4227cb8c92601f0caf258f624c0467719
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
This patch fixes a couple of issues for AArch32 builds on ARM reference
platforms :
1. The arm_def.h previously defined the same BL32_BASE value for AArch64 and
AArch32 build. Since BL31 is not present in AArch32 mode, this meant that
the BL31 memory is empty when built for AArch32. Hence this patch allocates
BL32 to the memory region occupied by BL31 for AArch32 builds.
As a side-effect of this change, the ARM_TSP_RAM_LOCATION macro cannot
be used to control the load address of BL32 in AArch32 mode which was
never the intention of the macro anyway.
2. A static assert is added to sp_min linker script to check that the progbits
are within the bounds expected when overlaid with other images.
3. Fix specifying `SPD` when building Juno for AArch32 mode. Due to the quirks
involved when building Juno for AArch32 mode, the build option SPD needed to
specifed. This patch corrects this and also updates the documentation in the
user-guide.
4. Exclude BL31 from the build and FIP when building Juno for AArch32 mode. As
a result the previous assumption that BL31 must be always present is removed
and the certificates for BL31 is only generated if `NEED_BL31` is defined.
Change-Id: I1c39bbc0abd2be8fbe9f2dea2e9cb4e3e3e436a8
Signed-off-by: Soby Mathew <soby.mathew@arm.com>
The `ENABLE_AMU` build option can be used to enable the
architecturally defined AMU counters. At present, there is no support
for the auxiliary counter group.
Change-Id: Ifc7532ef836f83e629f2a146739ab61e75c4abc8
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
The `ENABLE_AMU` build option can be used to enable the
architecturally defined AMU counters. At present, there is no support
for the auxiliary counter group.
Change-Id: I7ea0c0a00327f463199d1b0a481f01dadb09d312
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
The Cortex A75 has 5 AMU counters. The first three counters are fixed
and the remaining two are programmable.
A new build option is introduced, `ENABLE_AMU`. When set, the fixed
counters will be enabled for use by lower ELs. The programmable
counters are currently disabled.
Change-Id: I4bd5208799bb9ed7d2596e8b0bfc87abbbe18740
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
The flag support the following values:
- sha256 (default)
- sha384
- sha512
Change-Id: I7a49d858c361e993949cf6ada0a86575c3291066
Signed-off-by: Qixiang Xu <qixiang.xu@arm.com>
Factor out SPE operations in a separate file. Use the publish
subscribe framework to drain the SPE buffers before entering secure
world. Additionally, enable SPE before entering normal world.
A side effect of this change is that the profiling buffers are now
only drained when a transition from normal world to secure world
happens. Previously they were drained also on return from secure
world, which is unnecessary as SPE is not supported in S-EL1.
Change-Id: I17582c689b4b525770dbb6db098b3a0b5777b70a
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
Register count is currently declared as unsigned, where as there are
asserts in place to check it being negative during unregister. These are
flagged as never being true.
Change-Id: I34f00f0ac5bf88205791e9c1298a175dababe7c8
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
If an implementation of ARMv8.2 includes ARMv8.2-LPA, the value 0b0110
is permitted in ID_AA64MMFR0_EL1.PARange, which means that the Physical
Address range supported is 52 bits (4 PiB). It is a reserved value
otherwise.
Change-Id: Ie0147218e9650aa09f0034a9ee03c1cca8db908a
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
The FPEXC32_EL2 register controls SIMD and FP functionality when the
lower ELs are executing in AArch32 mode. It is architecturally mapped
to AArch32 system register FPEXC.
This patch removes FPEXC32_EL2 register from the System Register context
and adds it to the floating-point context. EL3 only saves / restores the
floating-point context if the build option CTX_INCLUDE_FPREGS is set to 1.
The rationale for this change is that if the Secure world is using FP
functionality and EL3 is not managing the FP context, then the Secure
world will save / restore the appropriate FP registers.
NOTE - this is a break in behaviour in the unlikely case that
CTX_INCLUDE_FPREGS is set to 0 and the platform contains an AArch32
Secure Payload that modifies FPEXC, but does not save and restore
this register
Change-Id: Iab80abcbfe302752d52b323b4abcc334b585c184
Signed-off-by: David Cunado <david.cunado@arm.com>
This allows for other EL3 components to schedule an SDEI event dispatch
to Normal world upon the next ERET. The API usage constrains are set out
in the SDEI dispatcher documentation.
Documentation to follow.
Change-Id: Id534bae0fd85afc94523490098c81f85c4e8f019
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
Support SDEI on ARM platforms using frameworks implemented in earlier
patches by defining and exporting SDEI events: this patch defines the
standard event 0, and a handful of shared and private dynamic events.
Change-Id: I9d3d92a92cff646b8cc55eabda78e140deaa24e1
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
Define number of priority bits, and allocate priority levels for SDEI.
Change-Id: Ib6bb6c5c09397f7caef950c4caed5a737b3d4112
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
Provide a strong definition for plat_sdei_validate_sdei_entrypoint()
which translates client address to Physical Address, and then validating
the address to be present in DRAM.
Change-Id: Ib93eb66b413d638aa5524d1b3de36aa16d38ea11
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
The function arm_validate_ns_entrypoint() validates a given non-secure
physical address. This function however specifically returns PSCI error
codes.
Non-secure physical address validation is potentially useful across ARM
platforms, even for non-PSCI use cases. Therefore make this function
common by returning 0 for success or -1 otherwise.
Having made the function common, make arm_validate_psci_entrypoint() a
wrapper around arm_validate_ns_entrypoint() which only translates return
value into PSCI error codes. This wrapper is now used where
arm_validate_ns_entrypoint() was currently used for PSCI entry point
validation.
Change-Id: Ic781fc3105d6d199fd8f53f01aba5baea0ebc310
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
The implementation currently supports only interrupt-based SDEI events,
and supports all interfaces as defined by SDEI specification version
1.0 [1].
Introduce the build option SDEI_SUPPORT to include SDEI dispatcher in
BL31.
Update user guide and porting guide. SDEI documentation to follow.
[1] http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf
Change-Id: I758b733084e4ea3b27ac77d0259705565842241a
Co-authored-by: Yousuf A <yousuf.sait@arm.com>
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
On GICv3 systems, as a side effect of adding provision to handle EL3
interrupts (unconditionally routing FIQs to EL3), pending Non-secure
interrupts (signalled as FIQs) may preempt execution in lower Secure ELs
[1]. This will inadvertently disrupt the semantics of Fast SMC
(previously called Atomic SMC) calls.
To retain semantics of Fast SMCs, the GIC PMR must be programmed to
prevent Non-secure interrupts from preempting Secure execution. To that
effect, two new functions in the Exception Handling Framework subscribe
to events introduced in an earlier commit:
- Upon 'cm_exited_normal_world', the Non-secure PMR is stashed, and
the PMR is programmed to the highest Non-secure interrupt priority.
- Upon 'cm_entering_normal_world', the previously stashed Non-secure
PMR is restored.
The above sequence however prevents Yielding SMCs from being preempted
by Non-secure interrupts as intended. To facilitate this, the public API
exc_allow_ns_preemption() is introduced that programs the PMR to the
original Non-secure PMR value. Another API
exc_is_ns_preemption_allowed() is also introduced to check if
exc_allow_ns_preemption() had been called previously.
API documentation to follow.
[1] On GICv2 systems, this isn't a problem as, unlike GICv3, pending NS
IRQs during Secure execution are signalled as IRQs, which aren't
routed to EL3.
Change-Id: Ief96b162b0067179b1012332cd991ee1b3051dd0
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
EHF is a framework that allows dispatching of EL3 interrupts to their
respective handlers in EL3.
This framework facilitates the firmware-first error handling policy in
which asynchronous exceptions may be routed to EL3. Such exceptions may
be handed over to respective exception handlers. Individual handlers
might further delegate exception handling to lower ELs.
The framework associates the delegated execution to lower ELs with a
priority value. For interrupts, this corresponds to the priorities
programmed in GIC; for other types of exceptions, viz. SErrors or
Synchronous External Aborts, individual dispatchers shall explicitly
associate delegation to a secure priority. In order to prevent lower
priority interrupts from preempting higher priority execution, the
framework provides helpers to control preemption by virtue of
programming Priority Mask register in the interrupt controller.
This commit allows for handling interrupts targeted at EL3. Exception
handlers own interrupts by assigning them a range of secure priorities,
and registering handlers for each priority range it owns.
Support for exception handling in BL31 image is enabled by setting the
build option EL3_EXCEPTION_HANDLING=1.
Documentation to follow.
NOTE: The framework assumes the priority scheme supported by platform
interrupt controller is compliant with that of ARM GIC architecture (v2
or later).
Change-Id: I7224337e4cea47c6ca7d7a4ca22a3716939f7e42
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
Acknowledging interrupt shall return a raw value from the interrupt
controller in which the actual interrupt ID may be encoded. Add a
platform API to extract the actual interrupt ID from the raw value
obtained from interrupt controller.
Document the new function. Also clarify the semantics of interrupt
acknowledge.
Change-Id: I818dad7be47661658b16f9807877d259eb127405
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
This initial port of the Secure Partitions Manager to FVP supports BL31
in both SRAM and Trusted DRAM.
A document with instructions to build the SPM has been added.
Change-Id: I4ea83ff0a659be77f2cd72eaf2302cdf8ba98b32
Co-authored-by: Douglas Raillard <douglas.raillard@arm.com>
Co-authored-by: Sandrine Bailleux <sandrine.bailleux@arm.com>
Co-authored-by: Achin Gupta <achin.gupta@arm.com>
Co-authored-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
A Secure Partition is a software execution environment instantiated in
S-EL0 that can be used to implement simple management and security
services. Since S-EL0 is an unprivileged exception level, a Secure
Partition relies on privileged firmware e.g. ARM Trusted Firmware to be
granted access to system and processor resources. Essentially, it is a
software sandbox that runs under the control of privileged software in
the Secure World and accesses the following system resources:
- Memory and device regions in the system address map.
- PE system registers.
- A range of asynchronous exceptions e.g. interrupts.
- A range of synchronous exceptions e.g. SMC function identifiers.
A Secure Partition enables privileged firmware to implement only the
absolutely essential secure services in EL3 and instantiate the rest in
a partition. Since the partition executes in S-EL0, its implementation
cannot be overly complex.
The component in ARM Trusted Firmware responsible for managing a Secure
Partition is called the Secure Partition Manager (SPM). The SPM is
responsible for the following:
- Validating and allocating resources requested by a Secure Partition.
- Implementing a well defined interface that is used for initialising a
Secure Partition.
- Implementing a well defined interface that is used by the normal world
and other secure services for accessing the services exported by a
Secure Partition.
- Implementing a well defined interface that is used by a Secure
Partition to fulfil service requests.
- Instantiating the software execution environment required by a Secure
Partition to fulfil a service request.
Change-Id: I6f7862d6bba8732db5b73f54e789d717a35e802f
Co-authored-by: Douglas Raillard <douglas.raillard@arm.com>
Co-authored-by: Sandrine Bailleux <sandrine.bailleux@arm.com>
Co-authored-by: Achin Gupta <achin.gupta@arm.com>
Co-authored-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
This function can be useful to setup TCR_ELx by callers that don't use
the translation tables library to setup the system registers related
to them. By making it common, it can be reused whenever it is needed
without duplicating code.
Change-Id: Ibfada9e846d2a6cd113b1925ac911bb27327d375
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Some SoCs integrate a GIC in version 1 that is currently not supported
by the trusted firmware. This change hijacks GICv2 driver to handle the
GICv1 as GICv1 is compatible enough with GICv2 as far as the platform
does not attempt to play with virtualization support or some GICv2
specific power features.
Note that current trusted firmware does not use these GICv2 features
that are not available in GICv1 Security Extension.
Change-Id: Ic2cb3055f1319a83455571d6d918661da583f179
Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org>
ARMv7-A Virtualization extensions brings new instructions and resources
that were supported by later architectures. Reference ARM ARM Issue C.c
[DDI0406C_C].
ERET and extended MSR/MRS instructions, as specified in [DDI0406C_C] in
ID_PFR1 description of bits[15:12] (Virtualization Extensions):
A value of 0b0001 implies implementation of the HVC, ERET, MRS
(Banked register), and MSR (Banked register) instructions. The ID_ISARs
do not identify whether these instructions are implemented.
UDIV/SDIV were introduced with the Virtualization extensions, even if
not strictly related to the virtualization extensions.
If ARMv7 based platform does not set ARM_CORTEX_Ax=yes, platform
shall define ARMV7_SUPPORTS_VIRTUALIZATION to enable virtualization
extension related resources.
Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org>
As Cortex-A9 needs to manually enable program flow prediction,
do not reset SCTLR[Z] at entry. Platform should enable it only
once MMU is enabled.
Change-Id: I34e1ee2da73221903f7767f23bc6fc10ad01e3de
Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org>
These macros are only defined for corresponding image,
and they are undefined for other images. It means that we have
to use ifdef or defined() instead of relying on being 0 by default.
Change-Id: Iad11efab9830ddf471599b46286e1c56581ef5a7
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
Change sizeof call so it references a static type instead of return of
a function in order to be MISRA compliant.
Change-Id: I6f1adb206073d6cd200156e281b8d76249e3af0e
Signed-off-by: Joel Hutton <joel.hutton@arm.com>
Add events that trigger before entry to normal/secure world. The
events trigger after the normal/secure context has been restored.
Similarly add events that trigger after leaving normal/secure world.
The events trigger after the normal/secure context has been saved.
Change-Id: I1b48a7ea005d56b1f25e2b5313d77e67d2f02bc5
Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
For Trusted Board Boot, BL2 needs more space to support the ECDSA
and ECDSA+RSA algorithms.
Change-Id: Ie7eda9a1315ce836dbc6d18d6588f8d17891a92d
Signed-off-by: Qixiang Xu <qixiang.xu@arm.com>
These hooks are intended to allow one platform to try load
images from alternative places. There is a hook to initialize
the sequence of boot locations and a hook to pass to the next
sequence.
Change-Id: Ia0f84c415208dc4fa4f9d060d58476db23efa5b2
Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
This allows other EL3 components to subscribe to CPU on events.
Update Firmware Design guide to list psci_cpu_on_finish as an available
event.
Change-Id: Ida774afe0f9cdce4021933fcc33a9527ba7aaae2
Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>