ppsspp/GPU/Vulkan/TextureCacheVulkan.cpp
Henrik Rydgård 75efcd9dfd
Merge pull request #16000 from unknownbrackets/gedebugger
Cleanup some crashes in GE debugger or with large textures
2022-09-11 19:41:11 +02:00

857 lines
30 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include <cstring>
#include "ext/xxhash.h"
#include "Common/File/VFS/VFS.h"
#include "Common/Data/Text/I18n.h"
#include "Common/Math/math_util.h"
#include "Common/Profiler/Profiler.h"
#include "Common/GPU/thin3d.h"
#include "Common/GPU/Vulkan/VulkanRenderManager.h"
#include "Common/Data/Convert/ColorConv.h"
#include "Common/StringUtils.h"
#include "Common/TimeUtil.h"
#include "Core/Config.h"
#include "Core/Host.h"
#include "Core/MemMap.h"
#include "Core/Reporting.h"
#include "Core/System.h"
#include "Common/GPU/Vulkan/VulkanContext.h"
#include "Common/GPU/Vulkan/VulkanImage.h"
#include "Common/GPU/Vulkan/VulkanMemory.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "GPU/Common/TextureShaderCommon.h"
#include "GPU/Common/PostShader.h"
#include "GPU/Common/TextureCacheCommon.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Vulkan/VulkanContext.h"
#include "GPU/Vulkan/TextureCacheVulkan.h"
#include "GPU/Vulkan/FramebufferManagerVulkan.h"
#include "GPU/Vulkan/ShaderManagerVulkan.h"
#include "GPU/Vulkan/DrawEngineVulkan.h"
using namespace PPSSPP_VK;
#define TEXCACHE_MIN_SLAB_SIZE (8 * 1024 * 1024)
#define TEXCACHE_MAX_SLAB_SIZE (32 * 1024 * 1024)
#define TEXCACHE_SLAB_PRESSURE 4
const char *uploadShader = R"(
#version 450
#extension GL_ARB_separate_shader_objects : enable
// 8x8 is the most common compute shader workgroup size, and works great on all major
// hardware vendors.
layout (local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
uniform layout(binding = 0, rgba8) writeonly image2D img;
layout(std430, binding = 1) buffer Buf {
uint data[];
} buf;
layout(push_constant) uniform Params {
int width;
int height;
} params;
uint readColoru(uvec2 p) {
return buf.data[p.y * params.width + p.x];
}
vec4 readColorf(uvec2 p) {
// Unpack the color (we could look it up in a CLUT here if we wanted...)
// The imageStore repack is free.
return unpackUnorm4x8(readColoru(p));
}
void writeColorf(ivec2 p, vec4 c) {
imageStore(img, p, c);
}
%s
// Note that main runs once per INPUT pixel, unlike the old model.
void main() {
uvec2 xy = gl_GlobalInvocationID.xy;
// Kill off any out-of-image threads to avoid stray writes.
// Should only happen on the tiniest mipmaps as PSP textures are power-of-2,
// and we use a 8x8 workgroup size. Probably not really necessary.
if (xy.x >= params.width || xy.y >= params.height)
return;
// applyScaling will write the upscaled pixels, using writeColorf above.
// It's expected to write a square of scale*scale pixels, at the location xy*scale.
applyScaling(xy);
}
)";
SamplerCache::~SamplerCache() {
DeviceLost();
}
VkSampler SamplerCache::GetOrCreateSampler(const SamplerCacheKey &key) {
VkSampler sampler = cache_.Get(key);
if (sampler != VK_NULL_HANDLE)
return sampler;
VkSamplerCreateInfo samp = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
samp.addressModeU = key.sClamp ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : VK_SAMPLER_ADDRESS_MODE_REPEAT;
samp.addressModeV = key.tClamp ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : VK_SAMPLER_ADDRESS_MODE_REPEAT;
// W addressing is irrelevant for 2d textures, but Mali recommends that all clamp modes are the same if possible so just copy from U.
samp.addressModeW = key.texture3d ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : samp.addressModeU;
samp.compareOp = VK_COMPARE_OP_ALWAYS;
samp.flags = 0;
samp.magFilter = key.magFilt ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
samp.minFilter = key.minFilt ? VK_FILTER_LINEAR : VK_FILTER_NEAREST;
samp.mipmapMode = key.mipFilt ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST;
if (key.aniso) {
// Docs say the min of this value and the supported max are used.
samp.maxAnisotropy = 1 << g_Config.iAnisotropyLevel;
samp.anisotropyEnable = true;
} else {
samp.maxAnisotropy = 1.0f;
samp.anisotropyEnable = false;
}
if (key.maxLevel == 9 * 256) {
// No max level needed.
samp.maxLod = VK_LOD_CLAMP_NONE;
} else {
samp.maxLod = (float)(int32_t)key.maxLevel * (1.0f / 256.0f);
}
samp.minLod = (float)(int32_t)key.minLevel * (1.0f / 256.0f);
samp.mipLodBias = (float)(int32_t)key.lodBias * (1.0f / 256.0f);
VkResult res = vkCreateSampler(vulkan_->GetDevice(), &samp, nullptr, &sampler);
_assert_(res == VK_SUCCESS);
cache_.Insert(key, sampler);
return sampler;
}
std::string SamplerCache::DebugGetSamplerString(std::string id, DebugShaderStringType stringType) {
SamplerCacheKey key;
key.FromString(id);
return StringFromFormat("%s/%s mag:%s min:%s mip:%s maxLod:%f minLod:%f bias:%f",
key.sClamp ? "Clamp" : "Wrap",
key.tClamp ? "Clamp" : "Wrap",
key.magFilt ? "Linear" : "Nearest",
key.minFilt ? "Linear" : "Nearest",
key.mipFilt ? "Linear" : "Nearest",
key.maxLevel / 256.0f,
key.minLevel / 256.0f,
key.lodBias / 256.0f);
}
void SamplerCache::DeviceLost() {
cache_.Iterate([&](const SamplerCacheKey &key, VkSampler sampler) {
vulkan_->Delete().QueueDeleteSampler(sampler);
});
cache_.Clear();
vulkan_ = nullptr;
}
void SamplerCache::DeviceRestore(VulkanContext *vulkan) {
vulkan_ = vulkan;
}
std::vector<std::string> SamplerCache::DebugGetSamplerIDs() const {
std::vector<std::string> ids;
cache_.Iterate([&](const SamplerCacheKey &id, VkSampler sampler) {
std::string idstr;
id.ToString(&idstr);
ids.push_back(idstr);
});
return ids;
}
TextureCacheVulkan::TextureCacheVulkan(Draw::DrawContext *draw, Draw2D *draw2D, VulkanContext *vulkan)
: TextureCacheCommon(draw, draw2D),
computeShaderManager_(vulkan),
samplerCache_(vulkan) {
DeviceRestore(draw);
}
TextureCacheVulkan::~TextureCacheVulkan() {
DeviceLost();
}
void TextureCacheVulkan::SetFramebufferManager(FramebufferManagerVulkan *fbManager) {
framebufferManager_ = fbManager;
}
void TextureCacheVulkan::DeviceLost() {
textureShaderCache_->DeviceLost();
VulkanContext *vulkan = draw_ ? (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT) : nullptr;
Clear(true);
samplerCache_.DeviceLost();
if (samplerNearest_)
vulkan->Delete().QueueDeleteSampler(samplerNearest_);
if (uploadCS_ != VK_NULL_HANDLE)
vulkan->Delete().QueueDeleteShaderModule(uploadCS_);
computeShaderManager_.DeviceLost();
nextTexture_ = nullptr;
draw_ = nullptr;
}
void TextureCacheVulkan::DeviceRestore(Draw::DrawContext *draw) {
VulkanContext *vulkan = (VulkanContext *)draw->GetNativeObject(Draw::NativeObject::CONTEXT);
draw_ = draw;
_assert_(!allocator_);
samplerCache_.DeviceRestore(vulkan);
textureShaderCache_->DeviceRestore(draw);
VkSamplerCreateInfo samp{ VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samp.magFilter = VK_FILTER_NEAREST;
samp.minFilter = VK_FILTER_NEAREST;
samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
VkResult res = vkCreateSampler(vulkan->GetDevice(), &samp, nullptr, &samplerNearest_);
_assert_(res == VK_SUCCESS);
CompileScalingShader();
computeShaderManager_.DeviceRestore(vulkan);
}
void TextureCacheVulkan::NotifyConfigChanged() {
TextureCacheCommon::NotifyConfigChanged();
CompileScalingShader();
}
static std::string ReadShaderSrc(const Path &filename) {
size_t sz = 0;
char *data = (char *)VFSReadFile(filename.c_str(), &sz);
if (!data)
return std::string();
std::string src(data, sz);
delete[] data;
return src;
}
void TextureCacheVulkan::CompileScalingShader() {
VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT);
if (!g_Config.bTexHardwareScaling || g_Config.sTextureShaderName != textureShader_) {
if (uploadCS_ != VK_NULL_HANDLE)
vulkan->Delete().QueueDeleteShaderModule(uploadCS_);
textureShader_.clear();
shaderScaleFactor_ = 0; // no texture scaling shader
} else if (uploadCS_) {
// No need to recreate.
return;
}
if (!g_Config.bTexHardwareScaling)
return;
ReloadAllPostShaderInfo(draw_);
const TextureShaderInfo *shaderInfo = GetTextureShaderInfo(g_Config.sTextureShaderName);
if (!shaderInfo || shaderInfo->computeShaderFile.empty())
return;
std::string shaderSource = ReadShaderSrc(shaderInfo->computeShaderFile);
std::string fullUploadShader = StringFromFormat(uploadShader, shaderSource.c_str());
std::string error;
uploadCS_ = CompileShaderModule(vulkan, VK_SHADER_STAGE_COMPUTE_BIT, fullUploadShader.c_str(), &error);
_dbg_assert_msg_(uploadCS_ != VK_NULL_HANDLE, "failed to compile upload shader");
textureShader_ = g_Config.sTextureShaderName;
shaderScaleFactor_ = shaderInfo->scaleFactor;
}
void TextureCacheVulkan::ReleaseTexture(TexCacheEntry *entry, bool delete_them) {
delete entry->vkTex;
entry->vkTex = nullptr;
}
VkFormat getClutDestFormatVulkan(GEPaletteFormat format) {
switch (format) {
case GE_CMODE_16BIT_ABGR4444:
return VULKAN_4444_FORMAT;
case GE_CMODE_16BIT_ABGR5551:
return VULKAN_1555_FORMAT;
case GE_CMODE_16BIT_BGR5650:
return VULKAN_565_FORMAT;
case GE_CMODE_32BIT_ABGR8888:
return VULKAN_8888_FORMAT;
}
return VK_FORMAT_UNDEFINED;
}
static const VkFilter MagFiltVK[2] = {
VK_FILTER_NEAREST,
VK_FILTER_LINEAR
};
void TextureCacheVulkan::StartFrame() {
TextureCacheCommon::StartFrame();
InvalidateLastTexture();
textureShaderCache_->Decimate();
timesInvalidatedAllThisFrame_ = 0;
texelsScaledThisFrame_ = 0;
replacementTimeThisFrame_ = 0.0;
if (clearCacheNextFrame_) {
Clear(true);
clearCacheNextFrame_ = false;
} else {
int slabPressureLimit = TEXCACHE_SLAB_PRESSURE;
if (g_Config.iTexScalingLevel > 1) {
// Since textures are 2D maybe we should square this, but might get too non-aggressive.
slabPressureLimit *= g_Config.iTexScalingLevel;
}
// TODO: Use some indication from VMA.
// Maybe see https://gpuopen-librariesandsdks.github.io/VulkanMemoryAllocator/html/staying_within_budget.html#staying_within_budget_querying_for_budget .
Decimate(false);
}
computeShaderManager_.BeginFrame();
}
void TextureCacheVulkan::EndFrame() {
computeShaderManager_.EndFrame();
if (texelsScaledThisFrame_) {
VERBOSE_LOG(G3D, "Scaled %i texels", texelsScaledThisFrame_);
}
}
void TextureCacheVulkan::UpdateCurrentClut(GEPaletteFormat clutFormat, u32 clutBase, bool clutIndexIsSimple) {
const u32 clutBaseBytes = clutFormat == GE_CMODE_32BIT_ABGR8888 ? (clutBase * sizeof(u32)) : (clutBase * sizeof(u16));
// Technically, these extra bytes weren't loaded, but hopefully it was loaded earlier.
// If not, we're going to hash random data, which hopefully doesn't cause a performance issue.
//
// TODO: Actually, this seems like a hack. The game can upload part of a CLUT and reference other data.
// clutTotalBytes_ is the last amount uploaded. We should hash clutMaxBytes_, but this will often hash
// unrelated old entries for small palettes.
// Adding clutBaseBytes may just be mitigating this for some usage patterns.
const u32 clutExtendedBytes = std::min(clutTotalBytes_ + clutBaseBytes, clutMaxBytes_);
if (replacer_.Enabled())
clutHash_ = XXH32((const char *)clutBufRaw_, clutExtendedBytes, 0xC0108888);
else
clutHash_ = XXH3_64bits((const char *)clutBufRaw_, clutExtendedBytes) & 0xFFFFFFFF;
clutBuf_ = clutBufRaw_;
// Special optimization: fonts typically draw clut4 with just alpha values in a single color.
clutAlphaLinear_ = false;
clutAlphaLinearColor_ = 0;
if (clutFormat == GE_CMODE_16BIT_ABGR4444 && clutIndexIsSimple) {
const u16_le *clut = GetCurrentClut<u16_le>();
clutAlphaLinear_ = true;
clutAlphaLinearColor_ = clut[15] & 0x0FFF;
for (int i = 0; i < 16; ++i) {
u16 step = clutAlphaLinearColor_ | (i << 12);
if (clut[i] != step) {
clutAlphaLinear_ = false;
break;
}
}
}
clutLastFormat_ = gstate.clutformat;
}
void TextureCacheVulkan::BindTexture(TexCacheEntry *entry) {
if (!entry || !entry->vkTex) {
imageView_ = VK_NULL_HANDLE;
curSampler_ = VK_NULL_HANDLE;
return;
}
entry->vkTex->Touch();
int maxLevel = (entry->status & TexCacheEntry::STATUS_NO_MIPS) ? 0 : entry->maxLevel;
SamplerCacheKey samplerKey = GetSamplingParams(maxLevel, entry);
curSampler_ = samplerCache_.GetOrCreateSampler(samplerKey);
imageView_ = entry->vkTex->GetImageView();
drawEngine_->SetDepalTexture(VK_NULL_HANDLE, false);
gstate_c.SetUseShaderDepal(ShaderDepalMode::OFF);
}
void TextureCacheVulkan::ApplySamplingParams(const SamplerCacheKey &key) {
curSampler_ = samplerCache_.GetOrCreateSampler(key);
}
void TextureCacheVulkan::Unbind() {
imageView_ = VK_NULL_HANDLE;
curSampler_ = VK_NULL_HANDLE;
InvalidateLastTexture();
}
void TextureCacheVulkan::BindAsClutTexture(Draw::Texture *tex, bool smooth) {
VkImageView clutTexture = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::TEXTURE_VIEW, tex);
drawEngine_->SetDepalTexture(clutTexture, smooth);
}
static Draw::DataFormat FromVulkanFormat(VkFormat fmt) {
switch (fmt) {
case VULKAN_8888_FORMAT: default: return Draw::DataFormat::R8G8B8A8_UNORM;
}
}
static VkFormat ToVulkanFormat(Draw::DataFormat fmt) {
switch (fmt) {
case Draw::DataFormat::R8G8B8A8_UNORM: default: return VULKAN_8888_FORMAT;
}
}
void TextureCacheVulkan::BuildTexture(TexCacheEntry *const entry) {
VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT);
BuildTexturePlan plan;
plan.hardwareScaling = g_Config.bTexHardwareScaling && uploadCS_ != VK_NULL_HANDLE;
plan.slowScaler = !plan.hardwareScaling || vulkan->DevicePerfClass() == PerfClass::SLOW;
if (!PrepareBuildTexture(plan, entry)) {
// We're screwed?
return;
}
VkFormat dstFmt = GetDestFormat(GETextureFormat(entry->format), gstate.getClutPaletteFormat());
if (plan.scaleFactor > 1) {
// Whether hardware or software scaling, this is the dest format.
dstFmt = VULKAN_8888_FORMAT;
}
// We don't generate mipmaps for 512x512 textures because they're almost exclusively used for menu backgrounds
// and similar, which don't really need it.
if (g_Config.iTexFiltering == TEX_FILTER_AUTO_MAX_QUALITY && plan.w <= 256 && plan.h <= 256) {
// Boost the number of mipmaps.
if (plan.maxPossibleLevels > plan.levelsToCreate) {
// We have to generate mips with a shader. This requires decoding to R8G8B8A8_UNORM format to avoid extra complications.
dstFmt = VULKAN_8888_FORMAT;
}
plan.levelsToCreate = plan.maxPossibleLevels;
}
// Any texture scaling is gonna move away from the original 16-bit format, if any.
VkFormat actualFmt = plan.scaleFactor > 1 ? VULKAN_8888_FORMAT : dstFmt;
if (plan.replaceValid) {
actualFmt = ToVulkanFormat(plan.replaced->Format(plan.baseLevelSrc));
}
bool computeUpload = false;
VkCommandBuffer cmdInit = (VkCommandBuffer)draw_->GetNativeObject(Draw::NativeObject::INIT_COMMANDBUFFER);
delete entry->vkTex;
entry->vkTex = new VulkanTexture(vulkan);
VulkanTexture *image = entry->vkTex;
const VkComponentMapping *mapping;
switch (actualFmt) {
case VULKAN_4444_FORMAT: mapping = &VULKAN_4444_SWIZZLE; break;
case VULKAN_1555_FORMAT: mapping = &VULKAN_1555_SWIZZLE; break;
case VULKAN_565_FORMAT: mapping = &VULKAN_565_SWIZZLE; break;
default: mapping = &VULKAN_8888_SWIZZLE; break;
}
VkImageLayout imageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
if (actualFmt == VULKAN_8888_FORMAT && plan.scaleFactor > 1 && plan.hardwareScaling) {
if (uploadCS_ != VK_NULL_HANDLE) {
computeUpload = true;
} else {
WARN_LOG(G3D, "Falling back to software scaling, hardware shader didn't compile");
}
}
if (computeUpload) {
usage |= VK_IMAGE_USAGE_STORAGE_BIT;
imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}
if (plan.saveTexture) {
actualFmt = VULKAN_8888_FORMAT;
}
char texName[128]{};
snprintf(texName, sizeof(texName), "tex_%08x_%s", entry->addr, GeTextureFormatToString((GETextureFormat)entry->format, gstate.getClutPaletteFormat()));
image->SetTag(texName);
bool allocSuccess = image->CreateDirect(cmdInit, plan.createW, plan.createH, plan.depth, plan.levelsToCreate, actualFmt, imageLayout, usage, mapping);
if (!allocSuccess && !lowMemoryMode_) {
WARN_LOG_REPORT(G3D, "Texture cache ran out of GPU memory; switching to low memory mode");
lowMemoryMode_ = true;
decimationCounter_ = 0;
Decimate();
// TODO: We should stall the GPU here and wipe things out of memory.
// As is, it will almost definitely fail the second time, but next frame it may recover.
auto err = GetI18NCategory("Error");
if (plan.scaleFactor > 1) {
host->NotifyUserMessage(err->T("Warning: Video memory FULL, reducing upscaling and switching to slow caching mode"), 2.0f);
} else {
host->NotifyUserMessage(err->T("Warning: Video memory FULL, switching to slow caching mode"), 2.0f);
}
// Turn off texture replacement for this texture.
plan.replaced = &replacer_.FindNone();
plan.createW /= plan.scaleFactor;
plan.createH /= plan.scaleFactor;
plan.scaleFactor = 1;
actualFmt = dstFmt;
allocSuccess = image->CreateDirect(cmdInit, plan.createW, plan.createH, plan.depth, plan.levelsToCreate, actualFmt, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, mapping);
}
if (!allocSuccess) {
ERROR_LOG(G3D, "Failed to create texture (%dx%d)", plan.w, plan.h);
delete entry->vkTex;
entry->vkTex = nullptr;
}
if (!entry->vkTex) {
return;
}
VK_PROFILE_BEGIN(vulkan, cmdInit, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
"Texture Upload (%08x) video=%d", entry->addr, plan.isVideo);
// Upload the texture data. We simply reuse the same loop for 3D texture slices instead of mips, if we have those.
int levels;
if (plan.depth > 1) {
levels = plan.depth;
} else {
levels = plan.levelsToLoad;
}
for (int i = 0; i < levels; i++) {
int mipUnscaledWidth = gstate.getTextureWidth(i);
int mipUnscaledHeight = gstate.getTextureHeight(i);
int mipWidth;
int mipHeight;
plan.GetMipSize(i, &mipWidth, &mipHeight);
int bpp = actualFmt == VULKAN_8888_FORMAT ? 4 : 2; // output bpp
int stride = (mipWidth * bpp + 15) & ~15; // output stride
int uploadSize = stride * mipHeight;
uint32_t bufferOffset;
VkBuffer texBuf;
// NVIDIA reports a min alignment of 1 but that can't be healthy... let's align by 16 as a minimum.
int pushAlignment = std::max(16, (int)vulkan->GetPhysicalDeviceProperties().properties.limits.optimalBufferCopyOffsetAlignment);
void *data;
std::vector<uint8_t> saveData;
auto loadLevel = [&](int sz, int srcLevel, int lstride, int lfactor) {
if (plan.saveTexture) {
saveData.resize(sz);
data = &saveData[0];
} else {
data = drawEngine_->GetPushBufferForTextureData()->PushAligned(sz, &bufferOffset, &texBuf, pushAlignment);
}
LoadTextureLevel(*entry, (uint8_t *)data, lstride, srcLevel, lfactor, actualFmt);
if (plan.saveTexture)
bufferOffset = drawEngine_->GetPushBufferForTextureData()->PushAligned(&saveData[0], sz, pushAlignment, &texBuf);
};
bool dataScaled = true;
if (plan.replaceValid) {
// Directly load the replaced image.
data = drawEngine_->GetPushBufferForTextureData()->PushAligned(uploadSize, &bufferOffset, &texBuf, pushAlignment);
double replaceStart = time_now_d();
plan.replaced->Load(plan.baseLevelSrc + i, data, stride); // if it fails, it'll just be garbage data... OK for now.
replacementTimeThisFrame_ += time_now_d() - replaceStart;
VK_PROFILE_BEGIN(vulkan, cmdInit, VK_PIPELINE_STAGE_TRANSFER_BIT,
"Copy Upload (replaced): %dx%d", mipWidth, mipHeight);
entry->vkTex->UploadMip(cmdInit, i, mipWidth, mipHeight, 0, texBuf, bufferOffset, stride / bpp);
VK_PROFILE_END(vulkan, cmdInit, VK_PIPELINE_STAGE_TRANSFER_BIT);
} else {
if (plan.depth != 1) {
// 3D texturing.
loadLevel(uploadSize, i, stride, plan.scaleFactor);
entry->vkTex->UploadMip(cmdInit, 0, mipWidth, mipHeight, i, texBuf, bufferOffset, stride / bpp);
} else if (computeUpload) {
int srcBpp = dstFmt == VULKAN_8888_FORMAT ? 4 : 2;
int srcStride = mipUnscaledWidth * srcBpp;
int srcSize = srcStride * mipUnscaledHeight;
loadLevel(srcSize, i == 0 ? plan.baseLevelSrc : i, srcStride, 1);
dataScaled = false;
// This format can be used with storage images.
VkImageView view = entry->vkTex->CreateViewForMip(i);
VkDescriptorSet descSet = computeShaderManager_.GetDescriptorSet(view, texBuf, bufferOffset, srcSize);
struct Params { int x; int y; } params{ mipUnscaledWidth, mipUnscaledHeight };
VK_PROFILE_BEGIN(vulkan, cmdInit, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
"Compute Upload: %dx%d->%dx%d", mipUnscaledWidth, mipUnscaledHeight, mipWidth, mipHeight);
vkCmdBindPipeline(cmdInit, VK_PIPELINE_BIND_POINT_COMPUTE, computeShaderManager_.GetPipeline(uploadCS_));
vkCmdBindDescriptorSets(cmdInit, VK_PIPELINE_BIND_POINT_COMPUTE, computeShaderManager_.GetPipelineLayout(), 0, 1, &descSet, 0, nullptr);
vkCmdPushConstants(cmdInit, computeShaderManager_.GetPipelineLayout(), VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(params), &params);
vkCmdDispatch(cmdInit, (mipUnscaledWidth + 7) / 8, (mipUnscaledHeight + 7) / 8, 1);
VK_PROFILE_END(vulkan, cmdInit, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT);
vulkan->Delete().QueueDeleteImageView(view);
} else {
loadLevel(uploadSize, i == 0 ? plan.baseLevelSrc : i, stride, plan.scaleFactor);
VK_PROFILE_BEGIN(vulkan, cmdInit, VK_PIPELINE_STAGE_TRANSFER_BIT,
"Copy Upload: %dx%d", mipWidth, mipHeight);
entry->vkTex->UploadMip(cmdInit, i, mipWidth, mipHeight, 0, texBuf, bufferOffset, stride / bpp);
VK_PROFILE_END(vulkan, cmdInit, VK_PIPELINE_STAGE_TRANSFER_BIT);
}
// Format might be wrong in lowMemoryMode_, so don't save.
if (replacer_.Enabled() && plan.replaced->IsInvalid() && !lowMemoryMode_) {
// When hardware texture scaling is enabled, this saves the original.
int w = dataScaled ? mipWidth : mipUnscaledWidth;
int h = dataScaled ? mipHeight : mipUnscaledHeight;
// At this point, data should be saveData, and not slow.
ReplacedTextureDecodeInfo replacedInfo;
replacedInfo.cachekey = entry->CacheKey();
replacedInfo.hash = entry->fullhash;
replacedInfo.addr = entry->addr;
replacedInfo.isVideo = IsVideo(entry->addr);
replacedInfo.isFinal = (entry->status & TexCacheEntry::STATUS_TO_SCALE) == 0;
replacedInfo.scaleFactor = plan.scaleFactor;
replacedInfo.fmt = FromVulkanFormat(actualFmt);
replacer_.NotifyTextureDecoded(replacedInfo, data, stride, plan.baseLevelSrc + i, w, h);
}
}
}
VkImageLayout layout = computeUpload ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
VkPipelineStageFlags prevStage = computeUpload ? VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT : VK_PIPELINE_STAGE_TRANSFER_BIT;
// Generate any additional mipmap levels.
// This will transition the whole stack to GENERAL if it wasn't already.
if (plan.levelsToLoad < plan.levelsToCreate) {
VK_PROFILE_BEGIN(vulkan, cmdInit, VK_PIPELINE_STAGE_TRANSFER_BIT, "Mipgen up to level %d", plan.levelsToCreate);
entry->vkTex->GenerateMips(cmdInit, plan.levelsToLoad, computeUpload);
layout = VK_IMAGE_LAYOUT_GENERAL;
prevStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
VK_PROFILE_END(vulkan, cmdInit, VK_PIPELINE_STAGE_TRANSFER_BIT);
}
entry->vkTex->EndCreate(cmdInit, false, prevStage, layout);
VK_PROFILE_END(vulkan, cmdInit, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
// Signal that we support depth textures so use it as one.
if (plan.depth > 1) {
entry->status |= TexCacheEntry::STATUS_3D;
}
if (plan.replaceValid) {
entry->SetAlphaStatus(TexCacheEntry::TexStatus(plan.replaced->AlphaStatus()));
}
}
VkFormat TextureCacheVulkan::GetDestFormat(GETextureFormat format, GEPaletteFormat clutFormat) const {
if (!gstate_c.Supports(GPU_SUPPORTS_16BIT_FORMATS)) {
return VK_FORMAT_R8G8B8A8_UNORM;
}
switch (format) {
case GE_TFMT_CLUT4:
case GE_TFMT_CLUT8:
case GE_TFMT_CLUT16:
case GE_TFMT_CLUT32:
return getClutDestFormatVulkan(clutFormat);
case GE_TFMT_4444:
return VULKAN_4444_FORMAT;
case GE_TFMT_5551:
return VULKAN_1555_FORMAT;
case GE_TFMT_5650:
return VULKAN_565_FORMAT;
case GE_TFMT_8888:
case GE_TFMT_DXT1:
case GE_TFMT_DXT3:
case GE_TFMT_DXT5:
default:
return VULKAN_8888_FORMAT;
}
}
CheckAlphaResult TextureCacheVulkan::CheckAlpha(const u32 *pixelData, VkFormat dstFmt, int w) {
switch (dstFmt) {
case VULKAN_4444_FORMAT:
return CheckAlpha16((const u16 *)pixelData, w, 0xF000);
case VULKAN_1555_FORMAT:
return CheckAlpha16((const u16 *)pixelData, w, 0x8000);
case VULKAN_565_FORMAT:
// Never has any alpha.
return CHECKALPHA_FULL;
default:
return CheckAlpha32(pixelData, w, 0xFF000000);
}
}
void TextureCacheVulkan::LoadTextureLevel(TexCacheEntry &entry, uint8_t *writePtr, int rowPitch, int level, int scaleFactor, VkFormat dstFmt) {
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
GETextureFormat tfmt = (GETextureFormat)entry.format;
GEPaletteFormat clutformat = gstate.getClutPaletteFormat();
u32 texaddr = gstate.getTextureAddress(level);
_assert_msg_(texaddr != 0, "Can't load a texture from address null")
int bufw = GetTextureBufw(level, texaddr, tfmt);
int bpp = dstFmt == VULKAN_8888_FORMAT ? 4 : 2;
u32 *pixelData;
int decPitch;
bool expand32 = !gstate_c.Supports(GPU_SUPPORTS_16BIT_FORMATS) || scaleFactor > 1 || dstFmt == VULKAN_8888_FORMAT;
if (scaleFactor > 1) {
tmpTexBufRearrange_.resize(std::max(bufw, w) * h);
pixelData = tmpTexBufRearrange_.data();
// We want to end up with a neatly packed texture for scaling.
decPitch = w * bpp;
} else {
pixelData = (u32 *)writePtr;
decPitch = rowPitch;
}
CheckAlphaResult alphaResult = DecodeTextureLevel((u8 *)pixelData, decPitch, tfmt, clutformat, texaddr, level, bufw, false, expand32);
entry.SetAlphaStatus(alphaResult, level);
if (scaleFactor > 1) {
u32 fmt = dstFmt;
// CPU scaling reads from the destination buffer so we want cached RAM.
uint8_t *rearrange = (uint8_t *)AllocateAlignedMemory(w * scaleFactor * h * scaleFactor * 4, 16);
scaler_.ScaleAlways((u32 *)rearrange, pixelData, w, h, scaleFactor);
pixelData = (u32 *)writePtr;
// We always end up at 8888. Other parts assume this.
_assert_(dstFmt == VULKAN_8888_FORMAT);
bpp = sizeof(u32);
decPitch = w * bpp;
if (decPitch != rowPitch) {
for (int y = 0; y < h; ++y) {
memcpy(writePtr + rowPitch * y, rearrange + decPitch * y, w * bpp);
}
decPitch = rowPitch;
} else {
memcpy(writePtr, rearrange, w * h * 4);
}
FreeAlignedMemory(rearrange);
}
}
void TextureCacheVulkan::BoundFramebufferTexture() {
imageView_ = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::BOUND_TEXTURE0_IMAGEVIEW);
}
bool TextureCacheVulkan::GetCurrentTextureDebug(GPUDebugBuffer &buffer, int level) {
SetTexture();
if (!nextTexture_) {
if (nextFramebufferTexture_) {
VirtualFramebuffer *vfb = nextFramebufferTexture_;
buffer.Allocate(vfb->bufferWidth, vfb->bufferHeight, GPU_DBG_FORMAT_8888, false);
bool retval = draw_->CopyFramebufferToMemorySync(vfb->fbo, Draw::FB_COLOR_BIT, 0, 0, vfb->bufferWidth, vfb->bufferHeight, Draw::DataFormat::R8G8B8A8_UNORM, buffer.GetData(), vfb->bufferWidth, "GetCurrentTextureDebug");
// Vulkan requires us to re-apply all dynamic state for each command buffer, and the above will cause us to start a new cmdbuf.
// So let's dirty the things that are involved in Vulkan dynamic state. Readbacks are not frequent so this won't hurt other backends.
gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE);
// We may have blitted to a temp FBO.
framebufferManager_->RebindFramebuffer("RebindFramebuffer - GetCurrentTextureDebug");
if (!retval)
ERROR_LOG(G3D, "Failed to get debug texture: copy to memory failed");
return retval;
} else {
return false;
}
}
// Apply texture may need to rebuild the texture if we're about to render, or bind a framebuffer.
TexCacheEntry *entry = nextTexture_;
ApplyTexture();
if (!entry->vkTex)
return false;
VulkanTexture *texture = entry->vkTex;
VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER);
GPUDebugBufferFormat bufferFormat;
Draw::DataFormat drawFormat;
switch (texture->GetFormat()) {
case VULKAN_565_FORMAT:
bufferFormat = GPU_DBG_FORMAT_565;
drawFormat = Draw::DataFormat::B5G6R5_UNORM_PACK16;
break;
case VULKAN_1555_FORMAT:
bufferFormat = GPU_DBG_FORMAT_5551;
drawFormat = Draw::DataFormat::B5G5R5A1_UNORM_PACK16;
break;
case VULKAN_4444_FORMAT:
bufferFormat = GPU_DBG_FORMAT_4444;
drawFormat = Draw::DataFormat::B4G4R4A4_UNORM_PACK16;
break;
case VULKAN_8888_FORMAT:
default:
bufferFormat = GPU_DBG_FORMAT_8888;
drawFormat = Draw::DataFormat::R8G8B8A8_UNORM;
break;
}
int w = texture->GetWidth();
int h = texture->GetHeight();
if (level > 0) {
// In the future, maybe this could do something for 3D textures...
if (level >= texture->GetNumMips())
return false;
w >>= level;
h >>= level;
}
buffer.Allocate(w, h, bufferFormat);
renderManager->CopyImageToMemorySync(texture->GetImage(), level, 0, 0, w, h, drawFormat, (uint8_t *)buffer.GetData(), w, "GetCurrentTextureDebug");
// Vulkan requires us to re-apply all dynamic state for each command buffer, and the above will cause us to start a new cmdbuf.
// So let's dirty the things that are involved in Vulkan dynamic state. Readbacks are not frequent so this won't hurt other backends.
gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE);
framebufferManager_->RebindFramebuffer("RebindFramebuffer - GetCurrentTextureDebug");
return true;
}
void TextureCacheVulkan::GetStats(char *ptr, size_t size) {
snprintf(ptr, size, "N/A");
}
std::vector<std::string> TextureCacheVulkan::DebugGetSamplerIDs() const {
return samplerCache_.DebugGetSamplerIDs();
}
std::string TextureCacheVulkan::DebugGetSamplerString(std::string id, DebugShaderStringType stringType) {
return samplerCache_.DebugGetSamplerString(id, stringType);
}