gecko-dev/gfx/qcms/transform-avx.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

204 lines
8.6 KiB
C++
Raw Normal View History

#include <emmintrin.h>
#include <immintrin.h>
#include "qcmsint.h"
template <size_t kRIndex, size_t kGIndex, size_t kBIndex, size_t kAIndex = NO_A_INDEX>
static void qcms_transform_data_template_lut_avx(const qcms_transform *transform,
const unsigned char *src,
unsigned char *dest,
size_t length)
{
const float (*mat)[4] = transform->matrix;
char input_back[64];
/* Ensure we have a buffer that's 32 byte aligned regardless of the original
* stack alignment. We can't use __attribute__((aligned(32))) or __declspec(align(32))
* because they don't work on stack variables. gcc 4.4 does do the right thing
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
float const * input = (float*)(((uintptr_t)&input_back[32]) & ~0x1f);
/* share input and output locations to save having to keep the
* locations in separate registers */
uint32_t const * output = (uint32_t*)input;
/* deref *transform now to avoid it in loop */
const float *igtbl_r = transform->input_gamma_table_r;
const float *igtbl_g = transform->input_gamma_table_g;
const float *igtbl_b = transform->input_gamma_table_b;
/* deref *transform now to avoid it in loop */
const uint8_t *otdata_r = &transform->output_table_r->data[0];
const uint8_t *otdata_g = &transform->output_table_g->data[0];
const uint8_t *otdata_b = &transform->output_table_b->data[0];
/* input matrix values never change */
const __m256 mat0 = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(mat[0]));
const __m256 mat1 = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(mat[1]));
const __m256 mat2 = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(mat[2]));
/* these values don't change, either */
const __m256 max = _mm256_set1_ps(CLAMPMAXVAL);
const __m256 min = _mm256_setzero_ps();
const __m256 scale = _mm256_set1_ps(FLOATSCALE);
const unsigned int components = A_INDEX_COMPONENTS(kAIndex);
/* working variables */
__m256 vec_r, vec_g, vec_b, result;
__m128 vec_r0, vec_g0, vec_b0, vec_r1, vec_g1, vec_b1;
unsigned char alpha1, alpha2;
/* CYA */
if (!length)
return;
/* If there are at least 2 pixels, then we can load their components into
a single 256-bit register for processing. */
if (length > 1) {
vec_r0 = _mm_broadcast_ss(&igtbl_r[src[kRIndex]]);
vec_g0 = _mm_broadcast_ss(&igtbl_g[src[kGIndex]]);
vec_b0 = _mm_broadcast_ss(&igtbl_b[src[kBIndex]]);
vec_r1 = _mm_broadcast_ss(&igtbl_r[src[kRIndex + components]]);
vec_g1 = _mm_broadcast_ss(&igtbl_g[src[kGIndex + components]]);
vec_b1 = _mm_broadcast_ss(&igtbl_b[src[kBIndex + components]]);
vec_r = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_r0), vec_r1, 1);
vec_g = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_g0), vec_g1, 1);
vec_b = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_b0), vec_b1, 1);
if (kAIndex != NO_A_INDEX) {
alpha1 = src[kAIndex];
alpha2 = src[kAIndex + components];
}
}
/* If there are at least 4 pixels, then we can iterate and preload the
next 2 while we store the result of the current 2. */
while (length > 3) {
/* Ensure we are pointing at the next 2 pixels for the next load. */
src += 2 * components;
/* gamma * matrix */
vec_r = _mm256_mul_ps(vec_r, mat0);
vec_g = _mm256_mul_ps(vec_g, mat1);
vec_b = _mm256_mul_ps(vec_b, mat2);
/* store alpha for these pixels; load alpha for next two */
if (kAIndex != NO_A_INDEX) {
dest[kAIndex] = alpha1;
dest[kAIndex + components] = alpha2;
alpha1 = src[kAIndex];
alpha2 = src[kAIndex + components];
}
/* crunch, crunch, crunch */
vec_r = _mm256_add_ps(vec_r, _mm256_add_ps(vec_g, vec_b));
vec_r = _mm256_max_ps(min, vec_r);
vec_r = _mm256_min_ps(max, vec_r);
result = _mm256_mul_ps(vec_r, scale);
/* store calc'd output tables indices */
_mm256_store_si256((__m256i*)output, _mm256_cvtps_epi32(result));
/* load gamma values for next loop while store completes */
vec_r0 = _mm_broadcast_ss(&igtbl_r[src[kRIndex]]);
vec_g0 = _mm_broadcast_ss(&igtbl_g[src[kGIndex]]);
vec_b0 = _mm_broadcast_ss(&igtbl_b[src[kBIndex]]);
vec_r1 = _mm_broadcast_ss(&igtbl_r[src[kRIndex + components]]);
vec_g1 = _mm_broadcast_ss(&igtbl_g[src[kGIndex + components]]);
vec_b1 = _mm_broadcast_ss(&igtbl_b[src[kBIndex + components]]);
vec_r = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_r0), vec_r1, 1);
vec_g = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_g0), vec_g1, 1);
vec_b = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_b0), vec_b1, 1);
/* use calc'd indices to output RGB values */
dest[kRIndex] = otdata_r[output[0]];
dest[kGIndex] = otdata_g[output[1]];
dest[kBIndex] = otdata_b[output[2]];
dest[kRIndex + components] = otdata_r[output[4]];
dest[kGIndex + components] = otdata_g[output[5]];
dest[kBIndex + components] = otdata_b[output[6]];
dest += 2 * components;
length -= 2;
}
/* There are 0-3 pixels remaining. If there are 2-3 remaining, then we know
we have already populated the necessary registers to start the transform. */
if (length > 1) {
vec_r = _mm256_mul_ps(vec_r, mat0);
vec_g = _mm256_mul_ps(vec_g, mat1);
vec_b = _mm256_mul_ps(vec_b, mat2);
if (kAIndex != NO_A_INDEX) {
dest[kAIndex] = alpha1;
dest[kAIndex + components] = alpha2;
}
vec_r = _mm256_add_ps(vec_r, _mm256_add_ps(vec_g, vec_b));
vec_r = _mm256_max_ps(min, vec_r);
vec_r = _mm256_min_ps(max, vec_r);
result = _mm256_mul_ps(vec_r, scale);
_mm256_store_si256((__m256i*)output, _mm256_cvtps_epi32(result));
dest[kRIndex] = otdata_r[output[0]];
dest[kGIndex] = otdata_g[output[1]];
dest[kBIndex] = otdata_b[output[2]];
dest[kRIndex + components] = otdata_r[output[4]];
dest[kGIndex + components] = otdata_g[output[5]];
dest[kBIndex + components] = otdata_b[output[6]];
src += 2 * components;
dest += 2 * components;
length -= 2;
}
/* There may be 0-1 pixels remaining. */
if (length == 1) {
vec_r0 = _mm_broadcast_ss(&igtbl_r[src[kRIndex]]);
vec_g0 = _mm_broadcast_ss(&igtbl_g[src[kGIndex]]);
vec_b0 = _mm_broadcast_ss(&igtbl_b[src[kBIndex]]);
vec_r0 = _mm_mul_ps(vec_r0, _mm256_castps256_ps128(mat0));
vec_g0 = _mm_mul_ps(vec_g0, _mm256_castps256_ps128(mat1));
vec_b0 = _mm_mul_ps(vec_b0, _mm256_castps256_ps128(mat2));
if (kAIndex != NO_A_INDEX) {
dest[kAIndex] = src[kAIndex];
}
vec_r0 = _mm_add_ps(vec_r0, _mm_add_ps(vec_g0, vec_b0));
vec_r0 = _mm_max_ps(_mm256_castps256_ps128(min), vec_r0);
vec_r0 = _mm_min_ps(_mm256_castps256_ps128(max), vec_r0);
vec_r0 = _mm_mul_ps(vec_r0, _mm256_castps256_ps128(scale));
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(vec_r0));
dest[kRIndex] = otdata_r[output[0]];
dest[kGIndex] = otdata_g[output[1]];
dest[kBIndex] = otdata_b[output[2]];
}
}
void qcms_transform_data_rgb_out_lut_avx(const qcms_transform *transform,
const unsigned char *src,
unsigned char *dest,
size_t length)
{
qcms_transform_data_template_lut_avx<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX>(transform, src, dest, length);
}
void qcms_transform_data_rgba_out_lut_avx(const qcms_transform *transform,
const unsigned char *src,
unsigned char *dest,
size_t length)
{
qcms_transform_data_template_lut_avx<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX, RGBA_A_INDEX>(transform, src, dest, length);
}
void qcms_transform_data_bgra_out_lut_avx(const qcms_transform *transform,
const unsigned char *src,
unsigned char *dest,
size_t length)
{
qcms_transform_data_template_lut_avx<BGRA_R_INDEX, BGRA_G_INDEX, BGRA_B_INDEX, BGRA_A_INDEX>(transform, src, dest, length);
}