gecko-dev/gfx/qcms/transform-avx.cpp
Andrew Osmond bb4bf3f608 Bug 1600911 - Implement AVX variant of QCMS ICCv2 algorithm. r=jrmuizel
Our performance gtests indicate anywhere from 10-20% reduction in
execution time based on the SSE2 version. Where it fell in the range
depended on the platform, but presumably that is related to the hardware
selected by treeherder. llvm-mca suggested it should be closer to 20%
on modern hardware (skylake).

Differential Revision: https://phabricator.services.mozilla.com/D55642

--HG--
extra : moz-landing-system : lando
2019-12-17 19:22:36 +00:00

204 lines
8.6 KiB
C++

#include <emmintrin.h>
#include <immintrin.h>
#include "qcmsint.h"
template <size_t kRIndex, size_t kGIndex, size_t kBIndex, size_t kAIndex = NO_A_INDEX>
static void qcms_transform_data_template_lut_avx(const qcms_transform *transform,
const unsigned char *src,
unsigned char *dest,
size_t length)
{
const float (*mat)[4] = transform->matrix;
char input_back[64];
/* Ensure we have a buffer that's 32 byte aligned regardless of the original
* stack alignment. We can't use __attribute__((aligned(32))) or __declspec(align(32))
* because they don't work on stack variables. gcc 4.4 does do the right thing
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
float const * input = (float*)(((uintptr_t)&input_back[32]) & ~0x1f);
/* share input and output locations to save having to keep the
* locations in separate registers */
uint32_t const * output = (uint32_t*)input;
/* deref *transform now to avoid it in loop */
const float *igtbl_r = transform->input_gamma_table_r;
const float *igtbl_g = transform->input_gamma_table_g;
const float *igtbl_b = transform->input_gamma_table_b;
/* deref *transform now to avoid it in loop */
const uint8_t *otdata_r = &transform->output_table_r->data[0];
const uint8_t *otdata_g = &transform->output_table_g->data[0];
const uint8_t *otdata_b = &transform->output_table_b->data[0];
/* input matrix values never change */
const __m256 mat0 = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(mat[0]));
const __m256 mat1 = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(mat[1]));
const __m256 mat2 = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(mat[2]));
/* these values don't change, either */
const __m256 max = _mm256_set1_ps(CLAMPMAXVAL);
const __m256 min = _mm256_setzero_ps();
const __m256 scale = _mm256_set1_ps(FLOATSCALE);
const unsigned int components = A_INDEX_COMPONENTS(kAIndex);
/* working variables */
__m256 vec_r, vec_g, vec_b, result;
__m128 vec_r0, vec_g0, vec_b0, vec_r1, vec_g1, vec_b1;
unsigned char alpha1, alpha2;
/* CYA */
if (!length)
return;
/* If there are at least 2 pixels, then we can load their components into
a single 256-bit register for processing. */
if (length > 1) {
vec_r0 = _mm_broadcast_ss(&igtbl_r[src[kRIndex]]);
vec_g0 = _mm_broadcast_ss(&igtbl_g[src[kGIndex]]);
vec_b0 = _mm_broadcast_ss(&igtbl_b[src[kBIndex]]);
vec_r1 = _mm_broadcast_ss(&igtbl_r[src[kRIndex + components]]);
vec_g1 = _mm_broadcast_ss(&igtbl_g[src[kGIndex + components]]);
vec_b1 = _mm_broadcast_ss(&igtbl_b[src[kBIndex + components]]);
vec_r = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_r0), vec_r1, 1);
vec_g = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_g0), vec_g1, 1);
vec_b = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_b0), vec_b1, 1);
if (kAIndex != NO_A_INDEX) {
alpha1 = src[kAIndex];
alpha2 = src[kAIndex + components];
}
}
/* If there are at least 4 pixels, then we can iterate and preload the
next 2 while we store the result of the current 2. */
while (length > 3) {
/* Ensure we are pointing at the next 2 pixels for the next load. */
src += 2 * components;
/* gamma * matrix */
vec_r = _mm256_mul_ps(vec_r, mat0);
vec_g = _mm256_mul_ps(vec_g, mat1);
vec_b = _mm256_mul_ps(vec_b, mat2);
/* store alpha for these pixels; load alpha for next two */
if (kAIndex != NO_A_INDEX) {
dest[kAIndex] = alpha1;
dest[kAIndex + components] = alpha2;
alpha1 = src[kAIndex];
alpha2 = src[kAIndex + components];
}
/* crunch, crunch, crunch */
vec_r = _mm256_add_ps(vec_r, _mm256_add_ps(vec_g, vec_b));
vec_r = _mm256_max_ps(min, vec_r);
vec_r = _mm256_min_ps(max, vec_r);
result = _mm256_mul_ps(vec_r, scale);
/* store calc'd output tables indices */
_mm256_store_si256((__m256i*)output, _mm256_cvtps_epi32(result));
/* load gamma values for next loop while store completes */
vec_r0 = _mm_broadcast_ss(&igtbl_r[src[kRIndex]]);
vec_g0 = _mm_broadcast_ss(&igtbl_g[src[kGIndex]]);
vec_b0 = _mm_broadcast_ss(&igtbl_b[src[kBIndex]]);
vec_r1 = _mm_broadcast_ss(&igtbl_r[src[kRIndex + components]]);
vec_g1 = _mm_broadcast_ss(&igtbl_g[src[kGIndex + components]]);
vec_b1 = _mm_broadcast_ss(&igtbl_b[src[kBIndex + components]]);
vec_r = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_r0), vec_r1, 1);
vec_g = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_g0), vec_g1, 1);
vec_b = _mm256_insertf128_ps(_mm256_castps128_ps256(vec_b0), vec_b1, 1);
/* use calc'd indices to output RGB values */
dest[kRIndex] = otdata_r[output[0]];
dest[kGIndex] = otdata_g[output[1]];
dest[kBIndex] = otdata_b[output[2]];
dest[kRIndex + components] = otdata_r[output[4]];
dest[kGIndex + components] = otdata_g[output[5]];
dest[kBIndex + components] = otdata_b[output[6]];
dest += 2 * components;
length -= 2;
}
/* There are 0-3 pixels remaining. If there are 2-3 remaining, then we know
we have already populated the necessary registers to start the transform. */
if (length > 1) {
vec_r = _mm256_mul_ps(vec_r, mat0);
vec_g = _mm256_mul_ps(vec_g, mat1);
vec_b = _mm256_mul_ps(vec_b, mat2);
if (kAIndex != NO_A_INDEX) {
dest[kAIndex] = alpha1;
dest[kAIndex + components] = alpha2;
}
vec_r = _mm256_add_ps(vec_r, _mm256_add_ps(vec_g, vec_b));
vec_r = _mm256_max_ps(min, vec_r);
vec_r = _mm256_min_ps(max, vec_r);
result = _mm256_mul_ps(vec_r, scale);
_mm256_store_si256((__m256i*)output, _mm256_cvtps_epi32(result));
dest[kRIndex] = otdata_r[output[0]];
dest[kGIndex] = otdata_g[output[1]];
dest[kBIndex] = otdata_b[output[2]];
dest[kRIndex + components] = otdata_r[output[4]];
dest[kGIndex + components] = otdata_g[output[5]];
dest[kBIndex + components] = otdata_b[output[6]];
src += 2 * components;
dest += 2 * components;
length -= 2;
}
/* There may be 0-1 pixels remaining. */
if (length == 1) {
vec_r0 = _mm_broadcast_ss(&igtbl_r[src[kRIndex]]);
vec_g0 = _mm_broadcast_ss(&igtbl_g[src[kGIndex]]);
vec_b0 = _mm_broadcast_ss(&igtbl_b[src[kBIndex]]);
vec_r0 = _mm_mul_ps(vec_r0, _mm256_castps256_ps128(mat0));
vec_g0 = _mm_mul_ps(vec_g0, _mm256_castps256_ps128(mat1));
vec_b0 = _mm_mul_ps(vec_b0, _mm256_castps256_ps128(mat2));
if (kAIndex != NO_A_INDEX) {
dest[kAIndex] = src[kAIndex];
}
vec_r0 = _mm_add_ps(vec_r0, _mm_add_ps(vec_g0, vec_b0));
vec_r0 = _mm_max_ps(_mm256_castps256_ps128(min), vec_r0);
vec_r0 = _mm_min_ps(_mm256_castps256_ps128(max), vec_r0);
vec_r0 = _mm_mul_ps(vec_r0, _mm256_castps256_ps128(scale));
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(vec_r0));
dest[kRIndex] = otdata_r[output[0]];
dest[kGIndex] = otdata_g[output[1]];
dest[kBIndex] = otdata_b[output[2]];
}
}
void qcms_transform_data_rgb_out_lut_avx(const qcms_transform *transform,
const unsigned char *src,
unsigned char *dest,
size_t length)
{
qcms_transform_data_template_lut_avx<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX>(transform, src, dest, length);
}
void qcms_transform_data_rgba_out_lut_avx(const qcms_transform *transform,
const unsigned char *src,
unsigned char *dest,
size_t length)
{
qcms_transform_data_template_lut_avx<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX, RGBA_A_INDEX>(transform, src, dest, length);
}
void qcms_transform_data_bgra_out_lut_avx(const qcms_transform *transform,
const unsigned char *src,
unsigned char *dest,
size_t length)
{
qcms_transform_data_template_lut_avx<BGRA_R_INDEX, BGRA_G_INDEX, BGRA_B_INDEX, BGRA_A_INDEX>(transform, src, dest, length);
}